长期连作农田土壤细菌群落结构和共现网络拓扑性质对土壤理化性质的响应
作者:
基金项目:

中国烟草总公司湖南省公司科技项目(HN2021KJ05);湖南省烟草公司长沙市公司科技项目(20-22A02)


Response of soil bacterial community structure and co-occurrence network topology properties to soil physicochemical properties in long-term continuous cropping farmland
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【目的】为探究长期连作土壤细菌群落结构和分子生态网络与土壤环境演化的关联性。【方法】本研究利用16S rRNA基因高通量测序技术,解析了湖南省浏阳市两块连作十二年农田(表现连作障碍的GD和健康的YA)土壤微生物群落组成结构和分子生态网络拓扑性质与土壤理化性质的关系。【结果】GD土壤总氮和有效磷含量显著高于YA,而土壤硝态氮和速效钾含量显著低于YA (P<0.05)。GD土壤细菌群落多样性高于YA,两地土壤细菌群落结构存在显著差异(P<0.01),且与土壤pH和有效磷含量相关。进一步分析表明,GD土壤细菌群落之间比YA具有更复杂的生态网络,主要体现在能量代谢、碳循环和氮循环功能模块。【结论】综上所述,连作会引起土壤细菌群落多样性、组成结构和生态网络变化,这可能与土壤理化性质恶化、土壤肥力下降密切相关,进而影响作物生长发育。

    Abstract:

    [Objective] To explore the relationship of soil bacterial community structure and molecular ecological network with soil environment in farmland with long-term continuous cropping. [Methods] In this study, high-throughput sequencing of 16S rRNA gene was performed to reveal the correlation of soil microbial community structure and topological properties of molecular ecological network with soil physicochemical properties of two 12-year continuous cropping fields (GD with continuous cropping obstacle and healthy YA) in Liuyang, Hunan province. [Results] The content of total nitrogen and available phosphorus in GD soil was significantly higher than that in YA soil, while the content of nitrate nitrogen and available potassium was significantly lower than that in YA soil (P<0.05). The bacterial diversity of GD soil was higher than that in YA soil, and the soil bacterial community structure was significantly different between GD and YA (P<0.01), which was related to soil pH and available phosphorus content. Soil bacterial community in GD had a more complex ecological network than that in YA, as manifested in the functional modules of energy metabolism, carbon cycle, and nitrogen cycle. [Conclusion] Continuous cropping can cause changes in soil bacterial community diversity, structure, and ecological network, which may be closely related to the deterioration of soil physicochemical properties and soil fertility, and affects crop growth and development.

    参考文献
    [1] Liu WX, Wang QL, Wang BZ, Wang XB, Franks AE, Teng Y, Li ZG, Luo YM. Changes in the abundance and structure of bacterial communities under long-term fertilization treatments in a peanut monocropping system. Plant and Soil, 2015, 395(1/2):415-427.
    [2] Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C. Food security:the challenge of feeding 9 billion people. Science, 2010, 327(5967):812-818.
    [3] Smith P. Delivering food security without increasing pressure on land. Global Food Security, 2013, 2(1):18-23.
    [4] Bai YX, Wang G, Cheng YD, Shi PY, Yang CC, Yang HW, Xu ZL. Soil acidification in continuously cropped tobacco alters bacterial community structure and diversity via the accumulation of phenolic acids. Scientific Reports, 2019, 9(1):12499.
    [5] Yan L, Zhang WY, Duan WJ, Zhang YZ, Zheng W, Lai XJ. Temporal bacterial community diversity in the Nicotiana tabacum rhizosphere over years of continuous monocropping. Frontiers in Microbiology, 2021, 12:641643.
    [6] Chen P, Wang YZ, Liu QZ, Zhang YT, Li XY, Li HQ, Li WH. Phase changes of continuous cropping obstacles in strawberry (Fragaria×ananassa Duch.) production. Applied Soil Ecology, 2020, 155:103626.
    [7] Xiong W, Li ZG, Liu HJ, Xue C, Zhang RF, Wu HS, Li R, Shen QR. The effect of long-term continuous cropping of black pepper on soil bacterial communities as determined by 454 pyrosequencing. PLoS One, 2015, 10(8):e0136946.
    [8] Mahal NK, Osterholz WR, Miguez FE, Poffenbarger HJ, Sawyer JE, Olk DC, Archontoulis SV, Castellano MJ. Nitrogen fertilizer suppresses mineralization of soil organic matter in maize agroecosystems. Frontiers in Ecology and Evolution, 2019, 7:59.
    [9] Torsvik V, Øvreås L. Microbial diversity and function in soil:from genes to ecosystems. Current Opinion in Microbiology, 2002, 5(3):240-245.
    [10] Brussaard L, de Ruiter PC, Brown GG. Soil biodiversity for agricultural sustainability. Agriculture, Ecosystems&Environment, 2007, 121(3):233-244.
    [11] De Graaff MA, Classen AT, Castro HF, Schadt CW. Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates. New Phytologist, 2010, 188(4):1055-1064.
    [12] Mangan SA, Schnitzer SA, Herre EA, Mack KML, Valencia MC, Sanchez EI, Bever JD. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature, 2010, 466(7307):752-755.
    [13] Urbanová M, Šnajdr J, Baldrian P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biology and Biochemistry, 2015, 84:53-64.
    [14] Avidano L, Gamalero E, Cossa GP, Carraro E. Characterization of soil health in an Italian polluted site by using microorganisms as bioindicators. Applied Soil Ecology, 2005, 30(1):21-33.
    [15] Lauber CL, Strickland MS, Bradford MA, Fierer N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology and Biochemistry, 2008, 40(9):2407-2415.
    [16] Mitchell RJ, Campbell CD, Chapman SJ, Cameron CM. The ecological engineering impact of a single tree species on the soil microbial community. Journal of Ecology, 2010, 98(1):50-61.
    [17] Bell TH, Yergeau E, Maynard C, Juck D, Whyte LG, Greer CW. Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance. The ISME Journal, 2013, 7(6):1200-1210.
    [18] Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW. Soil microbial community responses to multiple experimental climate change drivers. Applied and Environmental Microbiology, 2010, 76(4):999-1007.
    [19] Maestre FT, Delgado-Baquerizo M, Jeffries TC, Eldridge DJ, Ochoa V, Gozalo B, Quero JL, García-Gómez M, Gallardo A, Ulrich W, Bowker MA, Arredondo T, Barraza-Zepeda C, Bran D, Florentino A, Gaitán J, Gutiérrez JR, Huber-Sannwald E, Jankju M, Mau RL, Miriti M, Naseri K, Ospina A, Stavi I, Wang DL, Woods NN, Yuan X, Zaady E, Singh BK. Increasing aridity reduces soil microbial diversity and abundance in global drylands. PNAS, 2015, 112(51):15684-15689.
    [20] Barberán A, Bates ST, Casamayor EO, Fierer N. Using network analysis to explore co-occurrence patterns in soil microbial communities. The ISME Journal, 2012, 6(2):343-351.
    [21] Banerjee S, Schlaeppi K, Van Der Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning. Nature Reviews Microbiology, 2018, 16(9):567-576.
    [22] Nunan N, Leloup J, Ruamps LS, Pouteau V, Chenu C. Effects of habitat constraints on soil microbial community function. Scientific Reports, 2017, 7:4280.
    [23] Si P, Shao W, Yu HL, Yang XJ, Gao DT, Qiao XS, Wang ZQ, Wu GL. Rhizosphere microenvironments of eight common deciduous fruit trees were shaped by microbes in Northern China. Frontiers in Microbiology, 2018, 9:3147.
    [24] Wu YC, Cai P, Jing XX, Niu XK, Ji DD, Ashry NM, Gao CH, Huang QY. Soil biofilm formation enhances microbial community diversity and metabolic activity. Environment International, 2019, 132:105116.
    [25] Freilich S, Kreimer A, Meilijson I, Gophna U, Sharan R, Ruppin E. The large-scale organization of the bacterial network of ecological co-occurrence interactions. Nucleic Acids Research, 2010, 38(12):3857-3868.
    [26] Shi SJ, Nuccio EE, Shi ZJ, He ZL, Zhou JZ, Firestone MK. The interconnected rhizosphere:high network complexity dominates rhizosphere assemblages. Ecology Letters, 2016, 19(8):926-936.
    [27] De Angelis KM, Lindow SE, Firestone MK. Bacterial quorum sensing and nitrogen cycling in rhizosphere soil. FEMS Microbiology Ecology, 2008, 66(2):197-207.
    [28] Tan G, Liu YJ, Peng SG, Yin HQ, Meng DL, Tao JM, Gu YB, Li J, Yang S, Xiao NW, Liu DM, Xiang XW, Zhou ZC. Soil potentials to resist continuous cropping obstacle:three field cases. Environmental Research, 2021, 200:111319.
    [29] Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, Von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 2019, 37(8):852-857.
    [30] Liu C, Cui YM, Li XZ, Yao MJ. Microeco:an R package for data mining in microbial community ecology. FEMS Microbiology Ecology, 2020, 97(2):fiaa255.
    [31] Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biology, 2011, 12(6):R60.
    [32] Deng Y, Jiang YH, Yang YF, He ZL, Luo F, Zhou JZ. Molecular ecological network analyses. BMC Bioinformatics, 2012, 13:113.
    [33] Hu LN, Li Q, Yan JH, Liu C, Zhong JX. Vegetation restoration facilitates belowground microbial network complexity and recalcitrant soil organic carbon storage in southwest China karst region. Science of the Total Environment, 2022, 820:153137.
    [34] Wei XM, Hu YJ, Razavi BS, Zhou J, Shen JL, Nannipieri P, Wu JS, Ge TD. Rare taxa of alkaline phosphomonoesterase-harboring microorganisms mediate soil phosphorus mineralization. Soil Biology and Biochemistry, 2019, 131:62-70.
    [35] Ding S, Zhou DP, Wei HW, Wu SH, Xie B. Alleviating soil degradation caused by watermelon continuous cropping obstacle:application of urban waste compost. Chemosphere, 2021, 262:128387.
    [36] Qi GF, Ma GQ, Chen S, Lin CC, Zhao XY. Microbial network and soil properties are changed in bacterial wilt-susceptible soil. Applied and Environmental Microbiology, 2019, 85(13):e00162-e00119.
    [37] Wang F, Liang Y, Jiang Y, Yang Y, Xue K, Xiong J, Zhou J, Sun B. Planting increases the abundance and structure complexity of soil core functional genes relevant to carbon and nitrogen cycling. Scientific Reports, 2015, 5:14345.
    [38] 鲜文东,张潇橦,李文均.绿弯菌的研究现状及展望.微生物学报, 2020, 60(9):1801-1820. Xian WD, Zhang XT, Li WJ. Research status and prospect on bacterial phylum Chloroflexi. Acta Microbiologica Sinica, 2020, 60(9):1801-1820.(in Chinese)
    [39] Yu H, Wang FH, Shao MM, Huang L, Xie YY, Xu YX, Kong LR. Effects of rotations with legume on soil functional microbial communities involved in phosphorus transformation. Frontiers in Microbiology, 2021, 12:661100.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

曾维爱,杨昭玥,黄洋,谷亚冰,陶界锰,刘勇军,谢鹏飞,蔡海林,尹华群. 长期连作农田土壤细菌群落结构和共现网络拓扑性质对土壤理化性质的响应[J]. 微生物学报, 2022, 62(6): 2403-2416

复制
分享
文章指标
  • 点击次数:657
  • 下载次数: 1355
  • HTML阅读次数: 1219
  • 引用次数: 0
历史
  • 收稿日期:2021-11-02
  • 最后修改日期:2022-02-23
  • 在线发布日期: 2022-06-13
文章二维码