和厚朴酚对大肠埃希氏菌生物被膜形成的抑制机制
作者:
基金项目:

辽宁省教育厅科学研究一般项目(LJ2019010)


Mechanism of honokiol in inhibiting Escherichia coli biofilm formation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】研究不同浓度的和厚朴酚(honokiol)抑制大肠埃希菌(Escherichia coli)的供试菌株10389生物被膜(biofilm,BF)形成的作用机制。【方法】用氯化三苯基四氮唑比色法(TTC)和四唑盐减低法(XTT)测定honokiol抑制E.coli10389生物被膜形成的药物最低抑菌浓度(MIC)和最低杀菌浓度(MBC)及其抑制作用与时间的关系;通过qRT-PCR法检测不同浓度的honokiol对E.coli10389生物被膜形成基因和群体感应系统相关基因表达量的影响;通过生物发光法和qRT-PCR法检测亚-MIC honokiol对E.coli10389呋喃糖基硼酸二酯(AI-2)及其调控的与生物被膜形成相关的下游基因表达量的影响。【结果】Honokiol能抑制E.coli10389生物被膜的形成,但不同浓度的honokiol抑制E.coli10389 BF形成的作用机制不同。其中,与对照组相比,MIC的honokiol能使E.coli10389 BF形成相关基因编码毒素(hha)和细菌酸性调节因子(ariR) mRNA的表达量显著提高,抗毒素(ybaJ)的mRNA表达量显著降低。亚-MIC的honokiol则能抑制E.coli10389分泌AI-2的量,降低由其调控的与BF形成相关的下游基因的mRNA表达量。与对照组相比,16 mg/mL的honokiol可使荚膜异多糖酸基因mqsR、类黏蛋白基因mcbR和鞭毛形成基因csrA、flhD、flhC和flic的mRNA表达量分别降低65.21%、55.01%、73.16%、62.01%、60.30%和59.71%。【结论】Honokiol能抑制E.coli10389 BF的形成,但不同浓度的honokiol其抑制E.coli10389 BF形成的作用机制不同。其中,MIC的honokiol主要是通过影响BF形成的相关基因表达量来抑制E.coliBF的形成;而亚-MIC的honokiol则主要是通过抑制Luxs/AI-2系统的AI-2合成酶luxs基因的表达量,降低AI-2的分泌量,进而影响荚膜多糖、类黏蛋白和鞭毛等合成抑制E.coli BF的形成。

    Abstract:

    [Objective] To investigate the mechanism of honokiol at different concentration in inhibiting Escherichia coli 10389 biofilm (BF) formation. [Methods] We employed triphenyltetrazolium chloride (TTC) method to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of honokiol for the test strain and tetrazolium salt (XTT) reduction assay to investigate the influence of honokiol concentration on BF formation of the test strain and the influence over time. Through qRT-PCR, we examined the effect of honokiol concentration on the expression of genes related to BF formation and quorum sensing of the test strain. We detected the effect of honokiol at sub-MIC on the expression of furanosyl borate diester (AI-2) in E.coli 10389 and its regulated downstream genes associated with BF formation by bioluminescence and qRT-PCR. [Results] Honokiol inhibited the BF formation of E.coli 10389, but the mechanism was different for different concentration of honokiol. Among them, honokiol at MIC significantly increased the mRNA expression of toxin gene hha and bacterial acid regulator ariR involved in the BF formation of E.coli 10389 and significantly decreased the mRNA expression of toxin overexpression-modulating gene ybaJ compared with the control group. Honokiol at sub-MIC can suppress AI-2 secretion by E.coli 10389 and decrease the mRNA expression of its regulated downstream genes related to BF formation. Compared with the control, 16 mg/mL honokiol reduced the mRNA expression of colanic acid gene mqsR, mucoid gene mcbR, and flagellum formation-related genes csrA, flhD, flhC, and flic by 65.21%, 55.01%, 73.16%, 62.01%, 60.30%, and 59.71%, respectively. [Conclusion] Honokiol suppresses the BF formation of E.coli 10389, but the mechanism is different for honokiol of different concentration. Among them, honokiol at MIC mainly inhibits BF formation by affecting the expression of related genes, and honokiol at sub-MIC by suppressing the expression of the AI-2 synthase luxs gene of Luxs/AI-2 system, decreasing AI-2 secretion, and further influencing the synthesis of capsular polysaccharide, mucoid, and flagellin.

    参考文献
    [1] 刘静聪,方金玉,朱军莉.细菌生物被膜基质的研究进展.微生物学报, 2022, 62(1):47-56.Liu JC, Fang JY, Zhu JL. A brief review of biofilm matrix in structured microbial communities. Acta Microbiologica Sinica, 2022, 62(1):47-56.(in Chinese)
    [2] Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms:an emergent form of bacterial life. Nature Reviews Microbiology, 2016, 14(9):563-575.
    [3] Bowen WH, Burne RA, Wu H, Koo H. Oral biofilms:pathogens, matrix, and polymicrobial interactions in microenvironments. Trends in Microbiology, 2018, 26(3):229-242.
    [4] Gebreyohannes G, Nyerere A, Bii C, Sbhatu DB. Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon, 2019, 5(8):e02192.
    [5] Davies D. Understanding biofilm resistance to antibacterial agents. Nature Reviews Drug Discovery, 2003, 2(2):114-122.
    [6] Rasamiravaka T, Labtani Q, Duez P, El Jaziri M. The formation of biofilms by Pseudomonas aeruginosa:a review of the natural and synthetic compounds interfering with control mechanisms. BioMed Research International, 2015, 2015:759348.
    [7] 涂春田,汪洋,易力,王瑜欣,刘宝宝,宫胜龙.信号分子调控细菌生物被膜形成的分子机制.生物工程学报, 2019, 35(4):558-566.Tu CT, Wang Y, Yi L, Wang YX, Liu BB, Gong SL. Roles of signaling molecules in biofilm formation. Chinese Journal of Biotechnology, 2019, 35(4):558-566.(in Chinese)
    [8] 谭珍媛,邓家刚,张彤,韦锦斌,姚金霞,韦海施.中药厚朴现代药理研究进展.中国实验方剂学杂志, 2020, 26(22):228-234.Tan ZY, Deng JG, Zhang T, Wei JB, Yao JX, Wei HS. Research progress in modern pharmacology of Magnolia officinalis. Chinese Journal of Experimental Traditional Medical Formulae, 2020, 26(22):228-234.(in Chinese)
    [9] 梁紫微.和厚朴酚抗金黄色葡萄球菌磷壁酸诱导的氧化损伤与炎症反应研究.吉林大学硕士学位论文, 2019.
    [10] 李龙.和厚朴酚抗疱疹病毒的作用机制研究与STAT3在MHV68感染中的作用分析.中国科学院大学博士学位论文, 2019.
    [11] 刘宗慧.和厚朴酚抑制金黄色葡萄球菌α-溶血素介导的NLRP3炎性小体的机制研究.吉林大学硕士学位论文, 2018.
    [12] 黄梅,罗俊,沈建英.双氢青蒿素与头孢呋辛对大肠杆菌的协同抗菌作用及机制研究.中国中药杂志, 2020, 45(12):2975-2981.Huang M, Luo J, Shen JY. Synergistic antibacterial effect and mechanisms of dihydroartemisinin and cefuroxime incombination. China Journal of Chinese Materia Medica, 2020, 45(12):2975-2981.(in Chinese)
    [13] 郭静,孙静,张晟,颜正豪,亓庆国.白假丝酵母菌体外生物膜药敏性不同检测方法的比较.中国微生态学杂志, 2016, 28(4):388-391, 395.Guo J, Sun J, Zhang S, Yan ZH, Qi QG. Different detection methods for antifungal susceptibility of Saccharomyces albicans biofilms in vitro. Chinese Journal of Microecology, 2016, 28(4):388-391, 395.(in Chinese)
    [14] 荆雅玮.布鲁菌sahH在甲硫氨酸代谢通路中的活性研究.中国农业科学院硕士学位论文, 2018.
    [15] 王洪彬,朱利霞,于秀剑,高桂生,史秋梅,吴同垒.细菌生物被膜研究进展.动物医学进展, 2019, 40(9):74-79.Wang HB, Zhu LX, Yu XJ, Gao GS, Shi QM, Wu TL. Progress on bacterial biofilm. Progress in Veterinary Medicine, 2019, 40(9):74-79.(in Chinese)
    [16] 邹明明,王文骏,马晓彬,丁甜,刘东红.细菌生物被膜的研究进展.中国食品学报, 2017, 17(7):156-164.Zou MM, Wang WJ, Ma XB, Ding T, Liu DH. Research progress on bacterial biofilm. Journal of Chinese Institute of Food Science and Technology, 2017, 17(7):156-164.(in Chinese)
    [17] Recupido F, Toscano G, Tatè R, Petala M, Caserta S, Karapantsios TD, Guido S. The role of flow in bacterial biofilm morphology and wetting properties. Colloids and Surfaces B:Biointerfaces, 2020, 192:111047.
    [18] Hughes G, Webber MA. Novel approaches to the treatment of bacterial biofilm infections. British Journal of Pharmacology, 2017, 174(14):2237-2246.
    [19] 丁玉梅.黑籽南瓜对枯萎病菌侵染的应答机制及NBS类抗病基因筛选.西南大学博士学位论文, 2019.
    [20] 郑贤惠,汪钰鸿,张玥涛,张玉琴,陆聪,李水红.生物被膜与环二鸟苷酸信号系统.生命的化学, 2020, 40(12):2162-2169.Zheng XH, Wang YH, Zhang YT, Zhang YQ, Lu C, Li SH. Biofilm and c-di-GMP-mediated signaling pathway. Chemistry of Life, 2020, 40(12):2162-2169.(in Chinese)
    [21] 张丙周.副猪嗜血杆菌luxS/AI-2群体感应系统研究.华中农业大学博士学位论文, 2020.
    [22] 王一鸣.丁香酚抑制猪源肺炎克雷伯菌AI-2信号分子和MrkD蛋白机制研究.吉林农业大学博士学位论文, 2019.
    [23] 羊扬.大肠杆菌Ⅰ型群体感应功能研究.扬州大学博士学位论文, 2014.
    [24] 夏凯.巴氏醋杆菌耐酸性分子机制的研究.浙江工商大学博士学位论文, 2020.
    [25] 鲍燕.金黄色葡萄球菌Pfs的功能性研究及金葡萄感染的靶向性治疗.中国科学技术大学博士学位论文, 2012.
    [26] 张勇,王瑶,陈士云.群体感应信号分子AI-2研究进展.中国生物工程杂志, 2005, 25(9):14-18.Zhang Y, Wang Y, Chen SY. Advances on quorum sensing AI-2 signal molecular. Progress in Biotechnology, 2005, 25(9):14-18.(in Chinese)
    [27] 肖梦圆,武瑞赟,谭春明,李平兰.群体感应系统及其抑制剂对细菌生物被膜调控的研究进展.食品科学, 2020, 41(13):227-234.Xiao MY, Wu RY, Tan CM, Li PL. Recent advances in understanding the role of quorum sensing system and quorum sensing inhibitors in regulating bacterial biofilm formation. Food Science, 2020, 41(13):227-234.(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张凯,陈菲,谷劲松,谢明杰. 和厚朴酚对大肠埃希氏菌生物被膜形成的抑制机制[J]. 微生物学报, 2022, 62(7): 2521-2529

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-10-02
  • 最后修改日期:2021-12-06
  • 在线发布日期: 2022-07-06
  • 出版日期: 2022-07-04
文章二维码