嗜热古菌Thermofilum adornatum来源的高温热激活β-葡萄糖苷酶TaBgl3的原核表达及酶学性质研究
作者:
基金项目:

国家自然科学基金(31760438,32072166);广东省自然科学基金(2019A1515011696);茂名市科技项目(mmkj2020011);中国农业科学院农产品加工研究所"N专项"(CAAS-ASTIP-2021-IFST-SN2021-11)


Expression and characterization of thermo-activated β-glucosidase TaBgl3 from Thermofilum adornatum
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】β-葡萄糖苷酶,又称β-D-葡萄糖苷水解酶,属于纤维素酶类,是一种降解纤维素的关键限速酶。来源于嗜热古菌的β-葡萄糖苷酶已被广泛验证具有酸性高温等特性,已成为高温酶的研究热点之一。本文对尚未报道的来源于嗜热古菌中一种热丝菌(Thermofilum adornatum)的GH3家族的葡萄糖苷酶,进行了原核表达和酶学性质测定,以期找到更优的β-葡萄糖苷酶。【方法】从NCBI数据库中获得了嗜热古菌(T.adornatum)来源的GH3氨基酸序列,构建重组质粒pET-30a (+)-TaBgl3,并在大肠杆菌(Escherichiacoli) BL21(DE3)感受态细胞中诱导表达重组蛋白;采用磁珠纯化,研究其酶学性质。【结果】重组蛋白TaBgl3的分子量为77.0 kDa;酶学性质结果表明,其最适反应条件为80℃和pH 5.0,在70℃保温处理1–4 h,对TaBgl3的酶活力有促进作用,在最适温度80℃处理2 h后,其激活作用更加明显,能提高40%以上的酶活;其在pH 5.0–8.0下37℃保温1 h,仍具有60%以上的活性;底物为对硝基苯-β-D-吡喃葡萄糖苷(pNPG)时酶的比活力为144.23 U/mg,米氏常数Km值和最大反应速率Vmax分别为1.81 mmol/L和268.10 μmol/(mg·min),催化效率为115.47/s;终浓度为5 mmol/L的Cu2+、Li+和EDTA对TaBgl3的酶活有较大的促进作用,可提升39%以上的酶活,而5 mmol/L Fe3+和5%β-巯基乙醇对酶活有抑制作用,SDS、乙醇和葡萄糖对酶具有很强的抑制作用。【结论】本研究中,TaBgl3是酸性高温酶,且具有较好的热稳定性和热激活特性,这些特征在以后的理论研究及在工业生产中具有一定的科学价值。

    Abstract:

    [Objective] β-glucosidase, also known as β-D-glucosidase hydrolase, is a key rate-limiting enzyme for cellulose degradation, which is a cellulase. The β-glucosidases from thermophilic archaea have been verified to have tolerance to acid and high temperature, which have become one of the research hotspots of thermostable enzymes. We studied the prokaryotic expression and enzymatic properties of a GH3 family glucosidase from Thermofilum adornatum, which has not been reported, aiming to mine superior β-glucosidase. [Methods] We obtained the GH3 amino acid sequence of T.adornatum from NCBI database and constructed the recombinant plasmid pET-30a(+)-TaBgl3. The recombinant protein TaBgl3 was expressed in Escherichia coli BL21(DE3) competent cells under induction. The properties of the enzyme were studied after purification with magnetic beads. [Results] TaBgl3 had a molecular weight of 77.0 kDa and the best performance at pH 5.0 and 80℃. The treatment at 70℃ for 1-4 h improved the enzyme activity, and that at the optimum temperature of 80℃ for 2 h showed the most significant effect, which increased the enzyme activity by more than 40%. The enzyme still had the relative activity of above 60% after being treated 37℃ and pH 5.0-8.0 for 1 h. When the substrate was 4-p-nitrophenyl-β-D-glucopyranoside (pNPG), the enzyme had the specific activity of 144.23 U/mg, the Km value of 1.81 mmol/L, the maximum reaction rate of 268.10 μmol/(mg·min), and the catalytic efficiency of 115.47/s. Cu2+, Li+ and EDTA at the final concentration of 5 mmol/L all increased the enzyme activity, which had the maximum increase of 39%. Fe3+ (5 mmol/L) and 5% β-mercaptoethanol had inhibitory effect on the enzyme activity. In addition, SDS, ethanol and glucose greatly inhibited the enzyme activity. [Conclusion] TaBgl3 is an acidic thermostable enzyme with good thermal stability and thermal activation characteristics, which can shed light on the future theoretical research and industrial production.

    参考文献
    [1] Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms:proposal for the domains Archaea, Bacteria, and Eukarya. PNAS, 1990, 87(12):4576-4579.
    [2] Zhang CL, Pearson A, Li YL, Mills G, Wiegel J. Thermophilic temperature optimum for crenarchaeol synthesis and it simplication for archaeal evolution. Applied and Environmental Microbiology, 2006, 72(6):4419-4422.
    [3] 杨磊.超嗜热古菌Thermococcus siculi HJ21产高温α-葡萄糖苷酶的研究.江南大学硕士学位论文, 2008.
    [4] Vieille C, Zeikus GJ. Hyperthermophilic enzymes:sources, uses, and molecular mechanisms for thermostability. Microbiology and Molecular Biology Reviews, 2001, 65(1):1-43.
    [5] 姚瑶,刘庆,刘福,姚彦彤,朱森林,蒋红英. β-葡萄糖苷酶的性质及其在食品加工中的应用研究进展.贵州农业科学, 2018, 46(2):132-135.Yao Y, Liu Q, Liu F, Yao YT, Zhu SL, Jiang HY. Characteristics of β-glucosidase and its applications in food processing. Guizhou Agricultural Sciences, 2018, 46(2):132-135.(in Chinese)
    [6] Singh S, Singh DK, Meena A, Dubey V, Masood N, Luqman S. Rutin protects t‑butyl hydroperoxide-induced oxidative impairment via modulating the Nrf2 and iNOS activity. Phytomedicine, 2019, 55:92-104.
    [7] Berrin JG, McLauchlan WR, Needs P, Williamson G, Puigserver A, Kroon PA, Juge N. Functional expression of human liver cytosolic beta-glucosidase in Pichia pastoris. Insights into its role in the metabolism of dietary glucosides. European Journal of Biochemistry, 2002, 269(1):249-258.
    [8] Barabote RD, Xie G, Leu DH, Normand P, Necsulea A, Daubin V, Médigue C, Adney WS, Xu XC, Lapidus A, Parales RE, Detter C, Pujic P, Bruce D, Lavire C, Challacombe JF, Brettin TS, Berry AM. Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations. Genome Research, 2009, 19(6):1033-1043.
    [9] Maheshwari R, Bhardwaj G, Bha MK. Themophic fungi:their physiologhy and enzymes. Microbiology& Molecular Biology Reviews, 2000, 64(3):461-488.
    [10] Pei JJ, Pang Q, Zhao LG, Fan S, Shi H. Thermoanaerobacterium thermosaccharolyticum β-glucosidase:a glucose-tolerant enzyme with high specific activity for cellobiose. Biotechnology for Biofuels, 2012, 5(1):31.
    [11] Antwerpen MH, Georgi E, Zoeller L, Woelfel R, Stoecker K, Scheid P. Whole-genome sequencing of a pandoravirus isolated from keratitis-inducing acanthamoeba. Genome Announc, 2015, 3(2):e00136-15.
    [12] Henrissat B, Callebaut I, Fabrega S, Lehn P, Mornon JP, Davies G. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. PNAS, 1995, 92(15):7090-7094.
    [13] Henrissat B, Davies G. Structural and sequence-based classification of 113 glycoside hydrolases. Current Opinion in Structural Biology, 1997, 7:637-644.
    [14] 夏伟.嗜热真菌第3家族β-葡萄糖苷酶的多样性和分子改造.浙江大学博士学位论文, 2016.
    [15] Tiwari R, Kumar K, Singh S, Nain L, Shukla P. Molecular detection and environment-specific diversity of glycosyl hydrolase family 1β-glucosidase in different habitats. Frontiers in Microbiology, 2016, 7:1597.
    [16] Zhang C, Zhang LL, Wang DD, Ma HL, Liu BL, Shi Z, Ma XH, Chen Y, Chen Q. Evolutionary history of the glycoside hydrolase 3(GH3) family based on the sequenced genomes of 48 plants and identification of Jasmonic acid-related GH3 proteins in Solanum tuberosum. International Journal of Molecular Sciences, 2018, 19(7):1850.
    [17] 王欢.嗜热毛壳菌β-葡萄糖苷酶BGL3基因的克隆、表达和分子改造.山东农业大学硕士学位论文, 2018.
    [18] Kengen SW, Luesink EJ, Stams AJ, Zehnder AJ. Purification and characterization of an extremely thermostable β-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus. European Journal of Biochemistry, 1993, 213(1):305-312.
    [19] Bohlin C, Olsen SN, Morant MD, Patkar S, Borch K, Westh P. A comparative study of activity and apparent inhibition of fungal beta-glucosidases. Biotechnology and Bioengineering, 2010, 107(6):943-952.
    [20] 牛瑜. 6-磷酸-β-葡萄糖苷酶Pbgl25-217的克隆、表达与酶学性质研究.山东大学硕士学位论文, 2011.
    [21] González-Pombo P, Fariña L, Carrau F, Batista-Viera F, Brena BM. Aroma enhancement in wines using co-immobilized Aspergillus niger glycosidases. Food Chemistry, 2014, 143:185-191.
    [22] Pardo-García AI, De La Hoz KS, Zalacain A, Alonso GL, Salinas MR. Effect of vine foliar treatments on the varietal aroma of Monastrell wines. Food Chemistry, 2014, 163:258-266.
    [23] 盛玲玲. Thermotoga sp. β-葡萄糖苷酶重组表达、分子改造及制备低聚龙胆糖研究.江南大学硕士学位论文, 2020.
    [24] 朱婧,覃拥灵,陈桂光,张云开,刘演景,罗杰,梁智群. β-葡萄糖苷酶高产菌株的选育及酶法转化葡萄糖生产龙胆低聚糖.食品与发酵工业, 2010(4):21-24, 27.Zhu J, Qin YL, Chen GG, Zhang YK, Liu YJ, Luo J, Liang ZQ. Selection of the high β-glucosidase mutant and production of gentiooligosaccharid. Food and Fermentation Industries, 2010, 36(4):21-24, 27.(in Chinese)
    [25] Baba Y, Sumitani JI, Tani SJ, Kawaguchi T. Characterization of Aspergilus aculeatus β-glucosidase 1 accelerating cellulose hydrolysis with Trichoderma cellulase system. AMB Express, 2015, 5:3.
    [26] Kudo K, Watanabe A, Ujie S, Shintani T, Gomi K. Purification and enzymatic characterization of secretory glycoside hydrolase family 3(GH3) aryl β-glucosidases screened from Aspergillus oryzae genome. Journal of Bioscience& Bioengineering, 2015, 120(6):614-623.
    [27] 孙艳梅,张永忠,王伊强,许晶.大豆β-葡萄糖苷酶水解大豆异黄酮糖苷的研究.中国粮油学报, 2006, 21(2):86-89.Sun YM, Zhang YZ, Wang YQ, Xu J. Hydrolysis of soybean isoflavone glucosides by β-glucosidases from soybean. Journal of the Chinese Cereals and Oils Association, 2006, 21(2):86-89.(in Chinese)
    [28] Miksch R, Wiedemann G. Blood sugar determination with the GOD-POD-ABTS method using uranylacetate for deproteinization. Zeitschrift für Medizinische Labortechnik, 1973, 14(1):27-33.
    [29] Zayulina KS, Kochetkova TV, Piunova UE, Ziganshin RH, Podosokorskaya OA, Kublanov IV. Novel hyperthermophilic crenarchaeon Thermofilum adornatum sp. nov. uses GH1, GH3, and two novel glycosidases for cellulose hydrolysis. Frontiers in Microbiology, 2019, 10:2972.
    [30] Park TH, Choi KW, Park CS, Lee SB, Kang HY, Shon KJ, Park JS, Cha J. Substrate specificity and transglycosylation catalyzed by a thermostable beta-glucosidase from marine hyperthermophile Thermotoga neapolitana. Applied Microbiology and Biotechnology, 2005, 69(4):411-422.
    [31] Xie JC, Zhao DX, Zhao LG, Pei JJ, Xiao W, Ding G, Wang ZZ. Overexpression and characterization of a Ca (2+) activated thermostable β-glucosidase with high ginsenoside Rb1 to ginsenoside 20(S)-Rg3 bioconversion productivity. Journal of Industrial Microbiology& Biotechnology, 2015, 42(6):839-850.
    [32] Fang ZM, Fang W, Liu JJ, Hong YZ, Peng H, Zhang XC, Sun BL, Xiao YZ. Cloning and characterization of a β-glucosidase from marine microbial metagenome with excellent glucose tolerance. Journal of Microbiology and Biotechnology. 2010, 20(9):1351-1358.
    [33] 江民华,林厚民,尹金阳,王子龙,庞浩,黄日波,杜丽琴.差异柠檬酸杆菌GXW-1β-葡萄糖苷酶的酶学性质及分子改造.微生物学报, 2017, 57(3):363-374.Jiang MH, Lin HM, Yin JY, Wang ZL, Pang H, Huang RB, Du LQ. Characterization and molecular modification of β-glucosidase from Citrobacter koser GXW-1. Acta Microbiologica Sinica, 2017, 57(3):363-374.(in Chinese)
    [34] Kuo LC, Lee KT. Cloning, expression, and characterization of two β-glucosidase from isoflavone glycoside-hydrolyzing Bacillus subtilis natto.Journal of Agricultural& Food Chemistry, 2008, 56(1):119-125.
    [35] 刘洋,张汆,彭惠,董艺凝,赵维萍.热解糖高温厌氧杆菌β-葡萄糖苷酶的重组表达与酶学性质.应用与环境生物学报, 2021, 27(4):1062-1068.Liu Y, Zhang C, Peng H, Dong YN, Zhao WP. Recombinant expression and characterization of β-glucosidase from Thermoanaerobacterium thermosaccharolyticum. Chinese Journal of Applied and Environmental Biology, 2021, 27(4):1062-1068.(in Chinese)
    [36] Alekel DL, Genschel U, Koehler KJ, Hofmann H, Van Loan MD, Beer BS, Hanson LN, Peterson CT, Kurzer MS. Soy isoflavones for reducing bone loss study:effects of a 3-year trial on hormones, adverse events, and endometrial thickness in postmenopausal women. Menopause-the Journal of the North American, 2015, 22(2):185-197.
    [37] Nakamura A, Tsukada T, Auer S, Furuta T, Wada M, Koivula A, Igarashi K, Samejima M. The tryptophan residue at the active site tunnel entrance of Trichoderma reesei cellobiohydrolase Cel7A is important for initiation of degradation of crystalline cellulose. Journal of Biological Chemistry, 2013, 288(19):13503-13510.
    [38] De Souza AR, De Araújo GC, Zanphorlin LM, Ruller R, Franco FC, Torres FAG, Mertens JA, Bowman MJ, Gomes E, Da Silva R. Engineering increased thermostability in the GH-10 endo-1,4-β-xylanase from Thermoascus aurantiacus CBMAI 756. International Journal of Biological Macromolecules, 2016, 93:20-26.
    [39] De Giuseppe PO, De Arruda Campos Brasil Souza T, Souza FHM, Zanphorlin LM, Machado CB, Ward RJ, Jorge JA, Dos Prazeres Melo Furriel R, Murakami MT. Structural basis for glucose tolerance in GH1β-glucosidases. Acta Crystallographica Section D, Biological Crystallography, 2014, 70(Pt 6):1631-1639.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

沈风飞,缪婷婷,张晓晓,尹爱国,石鹏君,徐波. 嗜热古菌Thermofilum adornatum来源的高温热激活β-葡萄糖苷酶TaBgl3的原核表达及酶学性质研究[J]. 微生物学报, 2022, 62(7): 2555-2567

复制
相关视频

分享
文章指标
  • 点击次数:387
  • 下载次数: 1024
  • HTML阅读次数: 926
  • 引用次数: 0
历史
  • 收稿日期:2021-10-20
  • 最后修改日期:2022-01-27
  • 在线发布日期: 2022-07-06
  • 出版日期: 2022-07-04
文章二维码