产气荚膜梭菌前噬菌体的分布特点及遗传进化分析
作者:
基金项目:

中国科学院、青海省人民政府三江源国家公园联合研究专项(LHZX-2020-01-13)


Distribution and genetic evolution of prophages carried by Clostridium perfringens
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [49]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】分析和研究产气荚膜梭菌中前噬菌体的分布情况、基因组特点及遗传进化关系。【方法】利用PHASTER (phage search tool enhanced release)软件预测产气荚膜梭菌携带的前噬菌体,基于ANI (average nucleotide identity)值对前噬菌体进行分群,利用CARD (comprehensive antibiotic research database)、ResFinder 4.1、VFDB (virulence factors database)和BacMet (antibacterial biocide&metal resistance genes database)分析前噬菌体携带的耐药基因、毒力基因、抗菌剂/金属离子抗性基因,利用CRISPRCasFinder分析产气荚膜梭菌的CRISPR-Cas系统,利用MEGA 7.0进行前噬菌体的遗传进化关系分析。【结果】产气荚膜梭菌平均携带前噬菌体2.67条,其长度呈双峰分布,平均占基因组2.23%;前噬菌体不携带耐药基因,但携带了α毒素、唾液酶和溶血素等毒力基因以及重金属代谢基因;前噬菌体聚为3个类群,Group 1前噬菌体多为完整的前噬菌体且仅存在于A型产气荚膜梭菌;含完整的CRISPR-Cas系统的产气荚膜梭菌携带的前噬菌体相对较少,但CRISPR-Cas系统与前噬菌体的数量呈弱负相关;前噬菌体与产气荚膜梭菌噬菌体的遗传进化距离较远,仅有结构蛋白和部分酶类基因的同源性较高。【结论】产气荚膜梭菌普遍携带前噬菌体,但其CRISPR-Cas系统对前噬菌体的数量影响较小,前噬菌体携带的毒力基因和重金属代谢基因增强了产气荚膜梭菌致病性和对环境的适应性,但其功能和对产气荚膜梭菌遗传进化的影响仍需深入研究。

    Abstract:

    [Objective] To analyze the distribution, genomic characteristics, and genetic evolution of the prophages found in Clostridium perfringens. [Methods] Phage search tool enhanced release (PHASTER) was used to predict the prophages carried by C.perfringens. The prophages were classified into groups based on ANI value. Comprehensive antibiotic research database (CARD), ResFinder 4.1, virulence factors database (VFDB), and BacMet (antibacterial biocide & metal resistance genes database) were first employed to predict various genes related to antibiotic resistance, virulence, antibacterial biocide and metal resistance that can be encoded by the prophages, respectively. CRISPRCasFinder was then applied to predict the CRISPR-Cas system in C.perfringens, and MEGA 7.0 to analyze the genetic evolution of the prophages. [Results] Each C.perfringens genome was found to carry an average of 2.67 prophages and the size of prophage showed a bimodal distribution, accounting for 2.23% of C.perfringens genome on average. The prophages were not found to carry antibiotic resistance genes, but possessed genes of virulence factors such as alpha toxin, sialidase, and hemolysin, and genes related to the metal ion metabolism. The prophages clustered into 3 groups, and most of the prophages in Group 1 were intact and only existed in C.perfringens type A. C.perfringens with a complete CRISPR-Cas system carried a few prophages, but the number of spacers in CRISPR-Cas system was in negative correlation with the number of the prophages. The prophages showed far genetic distance from C.perfringens phages, and only structural proteins and some enzyme genes have been found to display high homology. [Conclusion] C.perfringens carries prophages, but its CRISPR-Cas system has little influence on the number of prophages. The virulence genes and metal resistance genes carried by the prophages can effectively enhance both the pathogenicity and adaptability of C.perfringens. However, their potential functions and impact on the genetic evolution of C.perfringens need to be further analyzed.

    参考文献
    [1] Martel A, Devriese LA, Cauwerts K, de Gussem K, Decostere A, Haesebrouck F. Susceptibility of Clostridium perfringens strains from broiler chickens to antibiotics and anticoccidials. Avian Pathology, 2004, 33(1):3-7.
    [2] Abbona CC, Stagnitta PV. Clostridium perfringens:comparative effects of heat and osmotic stress on non-enterotoxigenic and enterotoxigenic strains. Anaerobe, 2016, 39:105-113.
    [3] Lebrun M, Mainil JG, Linden A. Cattle enterotoxaemia and Clostridium perfringens:description, diagnosis and prophylaxis. Veterinary Record, 2010, 167(1):13-22.
    [4] Guran HS, Oksuztepe G. Detection and typing of Clostridium perfringens from retail chicken meat parts. Letters in Applied Microbiology, 2013, 57(1):77-82.
    [5] Stevens DL, Aldape MJ, Bryant AE. Life-threatening clostridial infections. Anaerobe, 2012, 18(2):254-259.
    [6] Watkins KL, Shryock TR, Dearth RN, Saif YM. In-vitro antimicrobial susceptibility of Clostridium perfringens from commercial Turkey and broiler chicken origin. Veterinary Microbiology, 1997, 54(2):195-200.
    [7] Gholamiandehkordi A, Eeckhaut V, Lanckriet A, Timbermont L, Bjerrum L, Ducatelle R, Haesebrouck F, van Immerseel F. Antimicrobial resistance in Clostridium perfringens isolates from broilers in Belgium. Veterinary Research Communications, 2009, 33(8):1031-1037.
    [8] Ngamwongsatit B, Tanomsridachchai W, Suthienkul O, Urairong S, Navasakuljinda W, Janvilisri T. Multidrug resistance in Clostridium perfringens isolated from diarrheal neonatal piglets in Thailand. Anaerobe, 2016, 38:88-93.
    [9] Mohiuddin M, Iqbal Z, Siddique A, Liao SQ, Salamat MKF, Qi NS, Din AM, Sun MF. Prevalence, genotypic and phenotypic characterization and antibiotic resistance profile of Clostridium perfringens type A and D isolated from feces of sheep (Ovis aries) and goats (Capra hircus) in punjab, Pakistan. Toxins, 2020, 12(10):657.
    [10] Adams V, Han XY, Lyras D, Rood JI. Antibiotic resistance plasmids and mobile genetic elements of Clostridium perfringens. Plasmid, 2018, 99:32-39.
    [11] Li JH, Adams V, Bannam TL, Miyamoto K, Garcia JP, Uzal FA, Rood JI, McClane BA. Toxin plasmids of Clostridium perfringens. Microbiology and Molecular Biology Reviews:MMBR, 2013, 77(2):208-233.
    [12] Brüssow H, Canchaya C, Hardt WD. Phages and the evolution of bacterial pathogens:from genomic rearrangements to lysogenic conversion. Microbiology and Molecular Biology Reviews:MMBR, 2004, 68(3):560-602.
    [13] Fortier LC, Sekulovic O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence, 2013, 4(5):354-365.
    [14] Harrison E, Brockhurst MA. Ecological and evolutionary benefits of temperate phage:what does or doesn't kill you makes you stronger. BioEssays, 2017, 39(12):1700112.
    [15] Paul JH. Prophages in marine bacteria:dangerous molecular time bombs or the key to survival in the seas?The ISME Journal, 2008, 2(6):579-589.
    [16] Canchaya C, Proux C, Fournous G, Bruttin A, Brüssow H. Prophage genomics. Microbiology and Molecular Biology Reviews, 2003, 67(2):238-276.
    [17] Eraclio G, Fortina MG, Labrie SJ, Tremblay DM, Moineau S. Characterization of prophages of Lactococcus garvieae. Scientific Reports, 2017, 7:1856.
    [18] Diene SM, Corvaglia AR, François P, van der Mee-Marquet N, Regional Infection Control Group of the Centre Region. Prophages and adaptation of Staphylococcus aureus ST398 to the human clinic. BMC Genomics, 2017, 18(1):133.
    [19] Casjens SR, Grose JH. Contributions of P2-and P22-like prophages to understanding the enormous diversity and abundance of tailed bacteriophages. Virology, 2016, 496:255-276.
    [20] Frost LS, Leplae R, Summers AO, Toussaint A. Mobile genetic elements:the agents of open source evolution. Nature Reviews Microbiology, 2005, 3(9):722-732.
    [21] Zimmer M, Vukov N, Scherer S, Loessner MJ. The murein hydrolase of the bacteriophage phi3626 dual lysis system is active against all tested Clostridium perfringens strains. Applied and Environmental Microbiology, 2002, 68(11):5311-5317.
    [22] Gervasi T, Curto RL, Narbad A, Mayer MJ. Complete genome sequence of ΦCP51, a temperate bacteriophage of Clostridium perfringens. Archives of Virology, 2013, 158(9):2015-2017.
    [23] Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang YJ, Wishart DS. PHASTER:a better, faster version of the PHAST phage search tool. Nucleic Acids Research, 2016, 44(W1):W16-W21.
    [24] Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, Huynh W, Nguyen ALV, Cheng AA, Liu SH, Min SY, Miroshnichenko A, Tran HK, Werfalli RE, Nasir JA, Oloni M, Speicher DJ, Florescu A, Singh B, Faltyn M, Hernandez-Koutoucheva A, Sharma AN, Bordeleau E, Pawlowski AC, Zubyk HL, Dooley D, Griffiths E, Maguire F, Winsor GL, Beiko RG, Brinkman FSL, Hsiao WWL, Domselaar GV, McArthur AG. CARD 2020:antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Research, 2020, 48(1):D517-D525.
    [25] Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, Philippon A, Allesoe RL, Rebelo AR, Florensa AF, Fagelhauer L, Chakraborty T, Neumann B, Werner G, Bender JK, Stingl K, Nguyen M, Coppens J, Xavier BB, Malhotra-Kumar S, Westh H, Pinholt M, Anjum MF, Duggett NA, Kempf I, Nykäsenoja S, Olkkola S, Wieczorek K, Amaro A, Clemente L, Mossong J, Losch S, Ragimbeau C, Lund O, Aarestrup FM. ResFinder 4.0 for predictions of phenotypes from genotypes. The Journal of Antimicrobial Chemotherapy, 2020, 75(12):3491-3500.
    [26] Chen LH, Zheng DD, Liu B, Yang J, Jin Q. VFDB 2016:hierarchical and refined dataset for big data analysis-10 years on. Nucleic Acids Research, 2015, 44(D1):D694-D697.
    [27] Pal C, Bengtsson-Palme J, Rensing C, Kristiansson E, Larsson DGJ. BacMet:antibacterial biocide and metal resistance genes database. Nucleic Acids Research, 2013, 42(D1):D737-D743.
    [28] Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J, Néron B, Rocha EPC, Vergnaud G, Gautheret D, Pourcel C. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Research, 2018, 46(W1):W246-W251.
    [29] Kumar S, Stecher G, Tamura K. MEGA 7:molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016, 33(7):1870-1874.
    [30] Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI:an improved algorithm and software for calculating average nucleotide identity. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(2):1100-1103.
    [31] Liu RX, Kuang J, Gong Q, Hou XL. Principal component regression analysis with spss. Computer Methods and Programs in Biomedicine, 2003, 71(2):141-147.
    [32] Tippmann S. Programming tools:adventures with R. Nature, 2015, 517(7532):109-110.
    [33] Touchon M, Bernheim A, Rocha EP. Genetic and life-history traits associated with the distribution of prophages in bacteria. The ISME Journal, 2016, 10(11):2744-2754.
    [34] Feiner R, Argov T, Rabinovich L, Sigal N, Borovok I, Herskovits AA. A new perspective on lysogeny:prophages as active regulatory switches of bacteria. Nature Reviews Microbiology, 2015, 13(10):641-650.
    [35] Wang MZ, Zeng ZL, Jiang FW, Zheng Y, Shen HG, Macedo N, Sun YX, Sahin O, Li GW. Role of enterotoxigenic Escherichia coli prophage in spreading antibiotic resistance in a porcine-derived environment. Environmental Microbiology, 2020, 22(12):4974-4984.
    [36] Brueggemann AB, Harrold CL, Rezaei Javan R, van Tonder AJ, McDonnell AJ, Edwards BA. Pneumococcal prophages are diverse, but not without structure or history. Scientific Reports, 2017, 7:42976.
    [37] Costa AR, Monteiro R, Azeredo J. Genomic analysis of Acinetobacter baumannii prophages reveals remarkable diversity and suggests profound impact on bacterial virulence and fitness. Scientific Reports, 2018, 8:15346.
    [38] Fu TW, Fan XY, Long QX, Deng WY, Song JL, Huang EY. Comparative analysis of prophages in Streptococcus mutans genomes. PeerJ, 2017, 5:e4057.
    [39] Bobay LM, Touchon M, Rocha EPC. Pervasive domestication of defective prophages by bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(33):12127-12132.
    [40] Casjens S. Prophages and bacterial genomics:what have we learned so far?Molecular Microbiology, 2003, 49(2):277-300.
    [41] Bobay LM, Rocha EPC, Touchon M. The adaptation of temperate bacteriophages to their host genomes. Molecular Biology and Evolution, 2012, 30(4):737-751.
    [42] Weiser R, Yap ZL, Otter A, Jones BV, Salvage J, Parkhill J, Mahenthiralingam E. A novel inducible prophage from Burkholderia vietnamiensis G4 is widely distributed across the species and has lytic activity against pathogenic Burkholderia. Viruses, 2020, 12(6):601.
    [43] Chithambaram S, Prabhakaran R, Xia XH. Differential codon adaptation between dsDNA and ssDNA phages in Escherichia coli. Molecular Biology and Evolution, 2014, 31(6):1606-1617.
    [44] López-Leal G, Santamaria RI, Cevallos MÁ, Gonzalez V, Castillo-Ramírez S. Letter to the editor:prophages encode antibiotic resistance genes in Acinetobacter baumannii.Microbial Drug Resistance, 2020, 26(10):1275-1277.
    [45] Revitt-Mills SA, Rood JI, Adams V. Clostridium perfringens extracellular toxins and enzymes:20 and counting. Microbiology Australia, 2015, 36(3):114.
    [46] Kiu R, Hall LJ. An update on the human and animal enteric pathogen Clostridium perfringens. Emerging Microbes& Infections, 2018, 7(1):1-15.
    [47] Li JH, McClane BA. The Sialidases of Clostridium perfringens type D strain CN3718 differ in their properties and sensitivities to inhibitors. Applied and Environmental Microbiology, 2014, 80(5):1701-1709.
    [48] Huang D, Yu PF, Ye M, Schwarz C, Jiang X, Alvarez PJJ. Enhanced mutualistic symbiosis between soil phages and bacteria with elevated chromium-induced environmental stress. Microbiome, 2021, 9(1):150.
    [49] Koonin EV, Makarova KS, Wolf YI. Evolutionary genomics of defense systems in archaea and bacteria. Annual Review of Microbiology, 2017, 71:233-261.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

韩生义,卢晓凤,李淑萍,林伟山,胡国元,石田,李生庆. 产气荚膜梭菌前噬菌体的分布特点及遗传进化分析[J]. 微生物学报, 2022, 62(7): 2610-2623

复制
分享
文章指标
  • 点击次数:430
  • 下载次数: 768
  • HTML阅读次数: 995
  • 引用次数: 0
历史
  • 收稿日期:2021-10-22
  • 最后修改日期:2021-12-18
  • 在线发布日期: 2022-07-06
  • 出版日期: 2022-07-04
文章二维码