疮痂链霉菌拮抗菌定向筛选及其功能评价
作者:
基金项目:

山东省重大科技创新工程(2018CXCC0303);广东省重点领域研发计划(2020B0202010005);中国科学院科技扶贫项目(KFJ-FP-201905,KFJ-FP-202001);中国科学院战略性先导科技专项(XDA13020601);中国科学院科技服务网络计划(KFJ-STS-QYZD-199)


Targeted screening and functional evaluation of the bacterial antagonistics to Streptomyces scabies
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    近年来由多种致病链霉菌引起的马铃薯疮痂病在我国普遍流行,且危害程度逐年加重,严重影响块茎的品质和商品价值。病原菌土传和种传,难以防控。利用拮抗微生物抑制病菌生长是目前防控疮痂病的重要措施。【目的】从病薯田土样中定向筛选对马铃薯疮痂病具有显著防效的菌种,研究其拮抗机制,评价其环境适应性,为开发可产业化应用的高效复合功能菌剂提供理论依据。【方法】通过平板对峙及盆栽试验研究目标菌株对主要病原菌疮痂链霉菌Streptomyces scabies的抑制效果;采用形态学、生理生化实验及分子生物学方法,确定其分类地位;结合高效液相色谱质谱联用方法分析相关抑菌活性物质。【结果】获得3株对致病链霉菌S.scabies具有显著拮抗功能的菌株HZ11-4、HS-12、HZ13-1,抑菌圈直径分别为34、29、30 mm,对马铃薯微型薯疮痂病的防效分别为68.57%、57.15%和65.96%。菌体革兰氏染色呈阳性,经鉴定均为解淀粉芽孢杆菌Bacillus amylolique-faciens;3株菌皆可扩增出surfactin、iturin和fengycin等脂肽类物质合成酶相关基因片段,检测到上述脂肽类抗生素的存在,其中,仅surfactin对S.scabies有一定抑制效果,但非主要活性物质。3株菌对茄链格孢菌、尖孢镰刀菌、立枯丝核菌、大丽轮枝菌等多种植物病原菌均具有明显的抑制效果;可耐受pH 5–9、NaCl含量1%–7%的盐碱环境和100℃高温;对氟菌·霜霉威、氟硅唑、吡唑醚菌酯、春雷霉素、中生菌素和甲基硫菌灵等生产上常用的杀菌剂不敏感;具有显著促生长特性。【结论】HZ11-4、HS-12和HZ13-1具有良好的环境适应性和广谱抗病性,均可作为防控马铃薯土传病害功能菌剂的候选菌株。文章首次验证了脂肽类抗生素surfactin、iturin A和fengycin均非抑制S.scabies的主要活性物质。

    Abstract:

    Potato common scab (CS) caused by pathogenic Streptomycetes has occurred widely in China and led to increasing damage to the quality and commercial value of potato. Since the pathogen is soil-borne and seed-borne, antagonistic microorganisms are regarded as an important method for the prevention and control of this disease. [Objective] We aim to screen out the antagonistic bacterial strains from the soil in the field with serious CS, reveal the mechanism of antagonism against Streptomyces scabies, and evaluate the environmental adaptability of the targeted strains. This study can provide a theoretical basis for developing applicable microbial agents. [Methods] The strains with antagonistic effects were screened out via the plate confrontation method and pot experiment and then identified based on morphological, physiological, biochemical, and molecular characteristics. Their metabolites with antifungal functions were detected via high performance liquid chromatography coupled with mass spectrometry.[Results] Three Gram-positive strains with antagonistic effects were identified as Bacillus amyloliquefaciens and designated HZ11-4, HS-12, and HZ13-1, which showed the inhibition zone diameters of 34, 29 and 30 mm to S.scabies and the control effects of 68.57%, 57.15%, and 65.96%, respectively. The genes coding for synthetases of surfactin, iturin, and fengycin were amplified from these strains, and existence of the lipopeptide antibiotics was detected by high performance liquid chromatography. S.scabies could be inhibited only by surfactin which was not the main active compound of the strains. The three strains exerted inhibitory effects on a variety of pathogens such as Alternaria solani, Fusarium oxysporum, Rhizoctonia solani, and Verticillium dahliae. They could live in a wide pH range of 5-9, tolerate 1%-7% NaCl and high temperature of 100℃, promote potato growth, and were insensitive to fluopicolide + propamocarb, flusilazole, pyraclostrobin, kasugamycin, zhongshengmycin and thiophanate-methyl. [Conclusion] Owing to the good environmental adaptability and broad-spectrum resistance, B.amyloliquefaciens HZ11-4, HS-12, and HZ13-1 can be used to develop compound microbial agents against potato soil-borne diseases. This study verifies for the first time that surfactin, iturin A, and fengycin are not the main active substances to inhibit S.scabies.

    参考文献
    [1] 徐进,朱杰华,杨艳丽,汤浩,吕和平,樊明寿,石瑛,董道峰,王贵江,王万兴,熊兴耀,高玉林.中国马铃薯病虫害发生情况与农药使用现状.中国农业科学, 2019, 52(16):2800-2808.Xu J, Zhu JH, Yang YL, Tang H, Lü HP, Fan MS, Shi Y, Dong DF, Wang GJ, Wang WX, Xiong XY, Gao YL. Status of major diseases and insect pests of potato and pesticide usage in China. Scientia Agricultura Sinica, 2019, 52(16):2800-2808.(in Chinese)
    [2] 聂峰杰,陈虞超,巩檑,张丽,甘晓燕,石磊,宋玉霞.马铃薯疮痂病致病链霉菌分类及其致病机理研究进展.分子植物育种, 2018, 16(4):1313-1319.Nie FJ, Chen YC, Gong L, Zhang L, Gan XY, Shi L, Song YX. Research progress on classification and pathogenesis of Streptomyces. spp of potato scab. Molecular Plant Breeding, 2018, 16(4):1313-1319.(in Chinese)
    [3] Leiminger J, Frank M, Wenk C, Poschenrieder G, Kellermann A, Schwarzfischer A. Distribution and characterization of Streptomyces species causing potato common scab in Germany. Plant Pathology, 2013, 62(3):611-623.
    [4] Dees MW, Sletten A, Hermansen A. Isolation and characterization of Streptomyces species from potato common scab lesions in Norway. Plant Pathology, 2013, 62(1):217-225.
    [5] Bischoff V, Cookson SJ, Wu S, Scheible WR. Thaxtomin A affects CESA-complex density, expression of cell wall genes, cell wall composition, and causes ectopic lignification in Arabidopsis thaliana seedlings. Journal of Experimental Botany, 2009, 60(3):955-965.
    [6] Li CP, Shi WC, Wu D, Tian RM, Wang B, Lin RS, Zhou B, Gao Z. Biocontrol of potato common scab by Brevibacillus laterosporus BL12 is related to the reduction of pathogen and changes in soil bacterial community. Biological Control, 2021, 153:104496.
    [7] Cui LX, Yang CD, Wei LJ, Li TH, Chen XY. Isolation and identification of an endophytic bacteria Bacillus velezensis 8-4 exhibiting biocontrol activity against potato scab[J]. Biological Control, 2020, 141.
    [8] Zhang XY, Li C, Hao JJ, Li YC, Li DZ, Zhang DM, Xing X, Liang Y. A novel Streptomyces sp. strain PBSH9 for controlling potato common scab caused by Streptomyces galilaeus. Plant Disease, 2020, 104(7):1986-1993.
    [9] Peng WJ, Zhong J, Yang J, Ren YL, Xu T, Xiao S, Zhou JY, Tan H. The artificial neural network approach based on uniform design to optimize the fed-batch fermentation condition:application to the production of iturin A. Microbial Cell Factories, 2014, 13(1):54.
    [10] 金清,肖明.新型抗菌肽——表面活性素、伊枯草菌素和丰原素.微生物与感染, 2018, 13(1):56-64.Jin Q, Xiao M. Novel antimicrobial peptides:surfactin, iturin and fengycin. Journal of Microbes and Infections, 2018, 13(1):56-64.(in Chinese)
    [11] Cullen DW, Lees AK. Detection of the nec1 virulence gene and its correlation with pathogenicity in Streptomyces species on potato tubers and in soil using conventional and real-time PCR. Journal of Applied Microbiology, 2007, 102(4):1082-1094.
    [12] 曹晶晶,熊悯梓,钞亚鹏,赵盼,汪志琴,仲乃琴.极耐盐碱固氮菌的分离鉴定及固氮特性研究[J/OL].微生物学报:1-17[2021-11-28]. https://doi.org/10. 13343/j.cnki.wsxb.20210054.Cao JJ, Xiong MZ, Chao YP, Zhao P, Wang ZQ, Zhong NQ. Isolation and identification of extremely saline-alkali-tolerant nitrogen-fixing bacteria and nitrogen-fixing characteristics[J/OL]. Acta Microbiology:1-17[2021-11-28]. https://doi.org/10. 13343/j.cnki.wsxb.20210054.
    [13] Joshi R, McSpadden Gardener BB. Identification and characterization of novel genetic markers associated with biological control activities in Bacillus subtilis. Phytopathology, 2006, 96(2):145-154.
    [14] 李振东,陈秀蓉,李鹏,满百膺.珠芽蓼内生菌Z5产IAA和抑菌能力测定及其鉴定.草业学报, 2010, 19(2):61-68.Li ZD, Chen XR, Li P, Man BY. Identification of Polygonum viviparum endophytic bacteria Z5 and determination of the capacity to secrete IAA and antagonistic capacity towards pathogenic fungi. Acta Prataculturae Sinica, 2010, 19(2):61-68.(in Chinese)
    [15] 李曦,廖汉鹏,崔鹏,白玉丹,刘晨,文畅,周顺桂. 3种常用除草剂对细菌抗生素耐药性的影响[J].环境科学, 2021, 42(5):2550-2557. DOI:10.13227/j. hjkx. 202009249.Li X, Liao HP, Cui P, Bai YD, Liu C, Wen C, Zhou SG. The effects of three commonly used herbicides on bacterial antibiotic resistance[J]. Environmental Science, 2021, 42(5):2550-2557.(in Chinese)
    [16] 杨慧敏,谢艳军.检验科微生物检验质量的影响因素及病原菌耐药性分析.中国卫生检验杂志, 2018, 28(6):664-666.Yang HM, Xie YJ. Analysis of influencing factors of microbiological examination quality and drug resistance of pathogenic bacteria in clinical laboratory. Chinese Journal of Health Laboratory Technology, 2018, 28(6):664-666.(in Chinese)
    [17] Bérdy J. Bioactive microbial metabolites. The Journal of Antibiotics, 2005, 58(1):1-26.
    [18] Bukhalid RA, Takeuchi T, Labeda D, Loria Rosemary. Horizontal transfer of the plant virulence gene, nec1, and flanking sequences among genetically.Applied& Environmental Microbiology, 2002, 68:738-744.
    [19] Kers Johan A et al. A large, mobile pathogenicity island confers plant pathogenicity on Streptomyces species. Molecular Microbiology, 2005, 55(4):1025-1033.
    [20] Hosny M, Abo-Elyousr KAM, Asran MR, Saead FA. Chemical control of potato common scab disease under field conditions. Archives of Phytopathology and Plant Protection, 2014, 47(18):2193-2199.
    [21] 孙庚,李志念,颜克成,陈亮,司乃国.应用于马铃薯疮痂病防治药剂筛选的改良方法研究.农药, 2020, 59(4):303-305.Sun G, Li ZN, Yan KC, Chen L, Si NG. The modified screening method rearch of fungicide against potato common scab. Agrochemicals, 2020, 59(4):303-305.(in Chinese)
    [22] Sarikhani E, Sagova-Mareckova M, Omelka M, Kopecky J. The effect of peat and iron supplements on the severity of potato common scab and bacterial community in tuberosphere soil. FEMS Microbiology Ecology, 2016, 93(1):fiw206.
    [23] Larkin RP, Griffin TS, Honeycutt CW. Rotation and cover crop effects on soilborne potato diseases, tuber yield, and soil microbial communities. Plant Disease, 2010, 94(12):1491-1502.
    [24] Johansen TJ, Dees MW, Hermansen A. High soil moisture reduces common scab caused by Streptomyces turgidiscabies and Streptomyces europaeiscabiei in potato. Acta Agriculturae Scandinavica, Section B-Soil& Plant Science, 2015, 65(3):193-198.
    [25] Braun S, Gevens A, Charkowski A, Allen C, Jansky S. Potato common scab:a review of the causal pathogens, management practices, varietal resistance screening methods, and host resistance. American Journal of Potato Research, 2017, 94(4):283-296.
    [26] 李扬凡,邵美琪,刘畅,郭庆港,王培培,陈秀叶,苏振贺,马平.解淀粉芽孢杆菌HMB33604的抑菌物质及对马铃薯黑痣病的防治效果.中国农业科学, 2021, 54(12):2559-2569.Li YF, Shao MQ, Liu C, Guo QG, Wang PP, Chen XY, Su ZH, Ma P. Identification of the antifungal active compounds from Bacillus amyloliquefaciens strain HMB33604 and its control efficacy against potato black scurf. Scientia Agricultura Sinica, 2021, 54(12):2559-2569.(in Chinese)
    [27] 高梦颖,付海燕,孙丛,王颜波,刘春光,马玉堃,杨峰山.马铃薯致病疫霉拮抗细菌研究进展.中国农学通报, 2021, 37(14):136-140.Gao MY, Fu HY, Sun C, Wang YB, Liu CG, Ma YK, Yang FS. Antagonistic bacteria of Ph 2020, 47(8):2425-2435.Shi YY, Zhao P, Song SW, Xiong MZ, Mo CB, Zhong NQ. Isolation and characterization of the antagonistic bacterium YN-2-2 against potato common scab. Microbiology China, 2020, 47(8):2425-2435.(in Chinese) y Alternaria alternata EBP3 by an endophytic bacterial strain Bacillus velezensis SEB1. Biological Control, 2021, 156:104551.
    [29] Ben Khedher S, Mejdoub-Trabelsi B, Tounsi S. Biological potential of Bacillus subtilis V26 for the control of Fusarium wilt and tuber dry rot on potato caused by Fusarium species and the promotion of plant growth. Biological Control, 2021, 152:104444.
    [30] 李岚岚,戴利铭,蒋桂芝,刘一贤,施玉萍,蔡志英.橡胶树炭疽病生防内生菌的分离鉴定及抑菌作用研究.热带作物学报, 2021, 42(10):2958-2965.Li LL, Dai LM, Jiang GZ, Liu YX, Shi YP, Cai ZY. Isolation, identification and bacteriostasis study of endophytic bacteria to control Colletotrichum leaf disease on rubber tree. Chinese Journal of Tropical Crops, 2021, 42(10):2958-2965.(in Chinese)
    [31] 董国然,沙理堂,周闯,符可芯,杨叶.两株解淀粉芽孢杆菌的鉴定及对抗多菌灵可可球二孢菌的拮抗作用.中国农业科技导报, 2021, 23(7):136-144.Dong GR, Sha LT, Zhou C, Fu KX, Yang Y. Identification of two strains of Bacillus amyloliquefaciens and their antagonistic activity to carbendazim-resistant Botryodiplodia theobromae. Journal of Agricultural Science and Technology, 2021, 23(7):136-144.(in Chinese)
    [32] Johnson B A, Anker H, Meleney F L. Bacitracin:a new antibiotic produced by a member of the B. subtilis group[J]. Science, 1945, 102(2650):376-377.
    [33] Liu J, Li W, Zhu XY, Zhao HZ, Lu YJ, Zhang C, Lu ZX. Surfactin effectively inhibits Staphylococcus aureus adhesion and biofilm formation on surfaces. Applied Microbiology and Biotechnology, 2019, 103(11):4565-4574.
    [34] Park G, Nam J, Kim J, Song J, Kim PI, Min HJ, Lee CW. Structure and mechanism of surfactin peptide from Bacillus velezensis antagonistic to fungi plant pathogens. Bulletin of the Korean Chemical Society, 2019, 40(7):704-709.
    [35] 张荣胜,王晓宇,罗楚平,刘永锋,刘邮洲,陈志谊.解淀粉芽孢杆菌Lx-11产脂肽类物质鉴定及表面活性素对水稻细菌性条斑病的防治作用.中国农业科学, 2013, 46(10):2014-2021.Zhang RS, Wang XY, Luo CP, Liu YF, Liu YZ, Chen ZY. Identification of the lipopeptides from Bacillus amyloliquefaciens lx-11 and biocontrol efficacy of surfactin against bacterial leaf streak. Scientia Agricultura Sinica, 2013, 46(10):2014-2021.(in Chinese)
    [36] Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environmental Microbiology, 2007, 9(4):1084-1090.
    [37] 邓永卓,张家宁,邓爽,赵心宇,李晓岩,牛犇.伊枯草菌素类抗菌肽抑菌活性及机理研究进展.中国抗生素杂志, 2020, 45(7):639-645.Deng YZ, Zhang JN, Deng S, Zhao XY, Li XY, Niu B. Progress on the antibacterial activity and antibacterial mechanisms of iturins. Chinese Journal of Antibiotics, 2020, 45(7):639-645.(in Chinese)
    [38] Gong AD, Li HP, Yuan QS, Song XS, Yao W, He WJ, Zhang JB, Liao YC. Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. PLoS One, 2015, 10(2):e0116871.
    [39] Chen K, Tian ZH, Luo Y, Cheng YJ, Long CA. Antagonistic activity and the mechanism of Bacillus amyloliquefaciens DH-4 against Citrus green mold. Phytopathology, 2018, 108(11):1253-1262.
    [40] Tang QY, Bie XM, Lu ZX, Lv FX, Tao Y, Qu XX. Effects of fengycin from Bacillus subtilis fmbJ on apoptosis and necrosis in Rhizopus stolonifer. Journal of Microbiology, 2014, 52(8):675-680.
    [41] 罗楚平,张婧,季冬淳,陈树桥,陈永兴,赵玉萍,李相前.表面活性素、杆菌霉素L、罗克霉素和泛革素4种脂肽类抗生素高效制备方法及其生物学活性.西南农业学报, 2018, 31(11):2307-2314.Luo CP, Zhang J, Ji DC, Chen SQ, Chen YX, Zhao YP, Li XQ. Purification of four family lipopeptides from Bacillus subtilis and analysis of their biological activities. Southwest China Journal of Agricultural Sciences, 2018, 31(11):2307-2314.(in Chinese)
    [42] 石莹莹,赵盼,宋双伟,熊悯梓,莫乘宝,仲乃琴.马铃薯疮痂病拮抗菌YN-2-2的分离与鉴定.微生物学通报,
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵永龙,赵盼,曹晶晶,汪志琴,刘璐,仲乃琴. 疮痂链霉菌拮抗菌定向筛选及其功能评价[J]. 微生物学报, 2022, 62(7): 2624-2641

复制
分享
文章指标
  • 点击次数:478
  • 下载次数: 995
  • HTML阅读次数: 1006
  • 引用次数: 0
历史
  • 收稿日期:2021-10-26
  • 最后修改日期:2021-12-01
  • 在线发布日期: 2022-07-06
  • 出版日期: 2022-07-04
文章二维码