毕赤酵母截短PGK1启动子与不同终止子组合调控外源基因表达
作者:
基金项目:

国家自然科学基金(31300076);广西自然科学基金(2019GXNSFAA245001,2018GXNSFAA281005,2017GXNSFAA198136);南京农业大学农业农村部农业环境微生物重点实验室开放课题(KFKT-EM201901)


Truncated PGK1 promoter is paired with varied terminators to regulate heterologous gene expression in Pichia pastoris
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【目的】调控多基因表达对于优化代谢途径和合成生物学应用至关重要,构建不同的启动子和终止子组合,可作为毕赤酵母代谢途径改造和优化外源基因表达的有力分子调控工具。【方法】首先,将毕赤酵母组成型磷酸甘油酸激酶基因的启动子PPGK1进行截短,构建截短启动子分别调控报告基因(绿色荧光蛋白基因egfp和β-半乳糖苷酶基因lacZ)表达的毕赤酵母重组菌。检测重组菌的报告基团转录水平、荧光强度和β-半乳糖苷酶产量。然后,构建了不同强度启动子和终止子组合(共27种组合)调控egfp表达的重组菌。最后,选取能调控基因高、中、低表达的6个启动子-终止子组合,调控β-呋喃果糖苷酶基因表达,构建β-呋喃果糖苷酶分泌表达的重组菌。【结果】构建的截短启动子(PPPPPEPPGPPD)的强度是野生型启动子PPGK1的70%–190%,最强的启动子为PPD。分别与9个终止子组合时,PPGPPEPPD启动子驱动egfp基因表达的强度最高的和最低的相比分别达到4倍、7倍和10倍。6个启动子-终止子组合调控β-呋喃果糖苷酶分泌表达的重组菌胞外酶产量最高的和最低的相比可达6倍。【结论】构建了不同的启动子-终止子组合,调控基因表达水平最高的和最低的相比达到10倍,可为优化毕赤酵母代谢工程和合成生物学应用中控制不同外源基因的表达量提供有力的分子工具。

    Abstract:

    Objective] Pichia pastoris (syn. Komagataella phaffii) has been extensively used as a versatile cell factory for the production of industrial enzymes and chemicals. However, well-tuned co-expression of multiple genes is a common challenge for P.pastoris in metabolic engineering and synthetic biology. Therefore, in this work, we constructed a set of terminators and paired them with varied promoters to tune the protein levels in P.pastoris.[Methods] We constructed the P.pastoris strains expressing reporter genes (egfp and lacZ) under the control of truncated constitutive 3-phosphoglycerate kinase (PGK1) promoters, and then measured the transcript levels of reporter genes, yEGFP fluorescence intensity and β-galactosidase activity of these strains. Next, we created a total of 27 promoter-terminator pairs to regulate the transcription of egfp, and used 6 promoter- terminator pairs to alter the secretory expression of β-fructofuranosidase (β-Ffase). [Results] The promoter activities of the truncated PPGK1 variants (PPP, PPE, PPG and PPD) relative to that of the native PPGK1 ranged from 70% to 190%. Furthermore, when paired with the weak promoter PPG, moderate promoter PPE, and strong promoter PPD, the terminators had the tuning ranges of 4, 7 and 10 folds (comparing between the strongest and weakest terminator), respectively. Finally, we demonstrated the utility of the promoter-terminator pairs for tuning the expression of the industrial enzyme β-Ffase, which showed an overall tuning range of 6 folds. [Conclusion] The promoter-terminator pairs constructed not only provide valuable information for understanding the modulatory roles of terminator regions in gene expression but also serve as a useful toolbox enabling the metabolic engineering of P.pastoris and the application of P.pastoris in synthetic biology.

    参考文献
    [1] Mattanovich D, Graf A, Stadlmann J, Dragosits M, Redl A, Maurer M, Kleinheinz M, Sauer M, Altmann F, Gasser B. Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris. Microbial Cell Factories, 2009, 8:29.
    [2] Zhu TC, Sun HB, Wang MY, Li Y. Pichia pastoris as a versatile cell factory for the production of industrial enzymes and chemicals:current status and future perspectives. Biotechnology Journal, 2019, 14(6):1800694.
    [3] Virdi V, Palaci J, Laukens B, Ryckaert S, Cox E, Vanderbeke E, Depicker A, Callewaert N. Yeast-secreted, dried and food-admixed monomeric IgA prevents gastrointestinal infection in a piglet model. Nature Biotechnology, 2019, 37(5):527-530.
    [4] Patra P, Das M, Kundu P, Ghosh A. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts. Biotechnology Advances, 2021, 47:107695.
    [5] Peña DA, Gasser B, Zanghellini J, Steiger MG, Mattanovich D. Metabolic engineering of Pichia pastoris. Metabolic Engineering, 2018, 50:2-15.
    [6] Arruda A, Reis VCB, Batista VDF, Daher BS, Piva LC, De Marco JL, De Moraes LMP, Torres FAG. A constitutive expression system for Pichia pastoris based on the PGK1 promoter. Biotechnology Letters, 2016, 38(3):509-517.
    [7] Nong LY, Zhang YM, Duan YH, Hu SL, Lin Y, Liang SL. Engineering the regulatory site of the catalase promoter for improved heterologous protein production in Pichia pastoris. Biotechnology Letters, 2020, 42(12):2703-2709.
    [8] Vogl T, Kickenweiz T, Pitzer J, Sturmberger L, Weninger A, Biggs BW, Köhler EM, Baumschlager A, Fischer JE, Hyden P, Wagner M, Baumann M, Borth N, Geier M, Ajikumar PK, Glieder A. Engineered bidirectional promoters enable rapid multi-gene co-expression optimization. Nature Communications, 2018, 9:3589.
    [9] Curran KA, Karim AS, Gupta A, Alper HS. Use of expression-enhancing terminators in Saccharomyces cerevisiae to increase mRNA half-life and improve gene expression control for metabolic engineering applications. Metabolic Engineering, 2013, 19:88-97.
    [10] Ito Y, Terai G, Ishigami M, Hashiba N, Nakamura Y, Bamba T, Kumokita R, Hasunuma T, Asai K, Ishii J, Kondo A. Exchange of endogenous and heterogeneous yeast terminators in Pichia pastoris to tune mRNA stability and gene expression. Nucleic Acids Research, 2020, 48(22):13000-13012.
    [11] Rajkumar AS, Varela JA, Juergens H, Daran JMG, Morrissey JP. Biological parts for Kluyveromyces marxianus synthetic biology. Frontiers in Bioengineering and Biotechnology, 2019, 7:97.
    [12] Ito Y, Kitagawa T, Yamanishi M, Katahira S, Izawa S, Irie K, Furutani-Seiki M, Matsuyama T. Enhancement of protein production via the strong DIT1Terminator and two RNA-binding proteins in Saccharomyces cerevisiae. Scientific Reports, 2016, 6:36997.
    [13] Yamanishi M, Ito Y, Kintaka R, Imamura C, Katahira S, Ikeuchi A, Moriya H, Matsuyama T. A genome-wide activity assessment of terminator regions in Saccharomyces cerevisiae provides a terminatome toolbox. ACS Synthetic Biology, 2013, 2(6):337-347.
    [14] Vogl T, Sturmberger L, Kickenweiz T, Wasmayer R, Schmid C, Hatzl AM, Gerstmann MA, Pitzer J, Wagner M, Thallinger GG, Geier M, Glieder A. A toolbox of diverse promoters related to methanol utilization:functionally verified parts for heterologous pathway expression in Pichia pastoris. ACS Synthetic Biology, 2016, 5(2):172-186.
    [15] Qin XL, Qian JC, Yao GF, Zhuang YP, Zhang SL, Chu J. GAP promoter library for fine-tuning of gene expression in Pichia pastoris. Applied and Environmental Microbiology, 2011, 77(11):3600-3608.
    [16] Xu QS, Zheng XQ, Huang MP, Wu M, Yan YS, Pan JM, Yang Q, Duan CJ, Liu JL, Feng JX. Purification and biochemical characterization of a novel β-fructofuranosidase from Penicillium oxalicum with transfructosylating activity producing neokestose. Process Biochemistry, 2015, 50(8):1237-1246.
    [17] Qin X, Qian J, Xiao C, Zhuang Y, Zhang S, Chu J. Reliable high-throughput approach for screening of engineered constitutive promoters in the yeast Pichia pastoris. Letters in Applied Microbiology, 2011, 52(6):634-641.
    [18] De Almeida JRM, De Moraes LMP, Torres FAG. Molecular characterization of the 3-phosphoglycerate kinase gene (PGK1) from the methylotrophic yeast Pichia pastoris. Yeast, 2005, 22(9):725-737.
    [19] 赵禹,赵雅坤,刘士琦,李建,李圣龙,肖冬光,于爱群.非常规酵母的分子遗传学及合成生物学研究进展.微生物学报, 2020, 60(8):1574-1591.Zhao Y, Zhao YK, Liu SQ, Li J, Li SL, Xiao DG, Yu AQ. Advances in molecular genetics and synthetic biology tools in unconventional yeasts. Acta Microbiologica Sinica, 2020, 60(8):1574-1591.(in Chinese)
    [20] Schwarzhans JP, Wibberg D, Winkler A, Luttermann T, Kalinowski J, Friehs K. Integration event induced changes in recombinant protein productivity in Pichia pastoris discovered by whole genome sequencing and derived vector optimization. Microbial Cell Factories, 2016, 15:84.
    [21] Curran KA, Morse NJ, Markham KA, Wagman AM, Gupta A, Alper HS. Short synthetic terminators for improved heterologous gene expression in yeast. ACS Synthetic Biology, 2015, 4(7):824-832.
    [22] Sun ZH, Brodsky JL. Protein quality control in the secretory pathway. The Journal of Cell Biology, 2019, 218(10):3171-3187.
    相似文献
    引证文献
引用本文

张慧杰,廖思敏,凌小翠,冯家勋,秦秀林. 毕赤酵母截短PGK1启动子与不同终止子组合调控外源基因表达[J]. 微生物学报, 2022, 62(7): 2642-2657

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-10-28
  • 最后修改日期:2022-01-15
  • 在线发布日期: 2022-07-06
  • 出版日期: 2022-07-04
文章二维码