基于转录组分析大肠杆菌响应亚碲酸盐的机制
作者:
基金项目:

上海自然科学基金(19ZR1475500)


Transcriptome profiling of Escherichia coli responding to tellurite
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [68]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    亚碲酸盐对绝大多数微生物有高毒性,可用作抗菌剂;但其具体毒性机制仍不清楚。【目的】理解亚碲酸盐的毒性机制,揭示亚碲酸盐处理导致的代谢变化。【方法】本研究通过比较转录组分析与挖掘差异转录基因,探讨了大肠杆菌响应亚碲酸盐胁迫的机制。【结果】Escherichia coli MG1655在10µg/mL亚碲酸盐处理1 h后,比较和分析了亚碲酸盐处理组与对照组的转录水平差异,发现细胞呈现一种明显的适应性变化,许多参与重要代谢途径的基因转录水平改变。其中,与核糖体代谢和鞭毛组装相关基因的转录水平发生显著变化,表明这两条途径很可能是亚碲酸盐作用的主要途径。与细胞能动性、金属离子代谢、细胞膜功能相关的基因的转录水平也发生了明显变化,可能是由于其参与了抵抗亚碲酸盐毒性的细胞代谢调节和损伤修复。【结论】本项工作有助于推动亚碲酸盐毒性机理的研究,促进亚碲酸盐的临床应用。

    Abstract:

    Tellurite as a strong antimicrobial agent is highly toxic to a variety of microorganisms, while its toxicity mechanism remains indistinct. [Objective] The main goal of this work is to uncover the global changes of cell metabolism under tellurite stress and reveal the toxicity mechanism of tellurite. [Methods] The transcriptomes of Escherichia coli MG1655 exposed to tellurite stress and under normal conditions were compared to reveal the differentially transcribed genes. [Results] After being treated with 10 µg/mL tellurite for 1 h, the cells exhibited an obvious adaptive response with many metabolic processes influenced. The transcription levels of the genes involved in ribosome metabolism and flagellar assembly changed significantly, implying the two pathways were affected by tellurite. The genes encoding the transcriptional factors and small RNAs and those functioning in the cell motility, metal ion metabolism, and membrane function also showed varied transcription levels, which might participate in the metabolism regulation and damage repair to resist the toxicity of tellurite. [Conclusion] This work can facilitate the study of the toxicity mechanism and promote the clinical application of tellurite.

    参考文献
    [1] Yurkov V, Jappe J, Vermeglio A. Tellurite resistance and reduction by obligately aerobic photosynthetic bacteria. Applied and Environmental Microbiology, 1996, 62(11):4195-4198.
    [2] Dantas G, Sommer MOA, Oluwasegun RD, Church GM. Bacteria subsisting on antibiotics. Science, 2008, 320(5872):100-103.
    [3] Molina-Quiroz RC, Muñoz-Villagrán CM, De La Torre E, Tantaleán JC, Vásquez CC, Pérez-Donoso JM. Enhancing the antibiotic antibacterial effect by sub lethal tellurite concentrations:tellurite and cefotaxime act synergistically in Escherichia coli. PLoS One, 2012, 7(4):e35452.
    [4] Elías AO, Abarca MJ, Montes RA, Chasteen TG, Pérez-Donoso JM, Vásquez CC. Tellurite enters Escherichia coli mainly through the PitA phosphate transporter. MicrobiologyOpen, 2012, 1(3):259-267.
    [5] Turner RJ, Weiner JH, Taylor DE. Tellurite-mediated thiol oxidation in Escherichia coli. Microbiology:Reading, England, 1999, 145(Pt 9):2549-2557.
    [6] Turner RJ, Aharonowitz Y, Weiner JH, Taylor DE. Glutathione is a target in tellurite toxicity and is protected by tellurite resistance determinants in Escherichia coli. Canadian Journal of Microbiology, 2001, 47(1):33-40.
    [7] Calderón IL, Elías AO, Fuentes EL, Pradenas GA, Castro ME, Arenas FA, Pérez JM, Vásquez CC. Tellurite-mediated disabling of[4Fe-4S] clusters of Escherichia coli dehydratases. Microbiology, 2009, 155(6):1840-1846.
    [8] Refsgaard HH, Tsai L, Stadtman ER. Modifications of proteins by polyunsaturated fatty acid peroxidation products. PNAS, 2000, 97(2):611-616.
    [9] Aradská J, Smidák R, Turkovičová L, Turňa J, Lubec G. Proteomic differences between tellurite-sensitive and tellurite-resistant E. coli. PLoS One, 2013, 8(11):e78010.
    [10] Morales EH, Pinto CA, Luraschi R, Muñoz-Villagrán CM, Cornejo FA, Simpkins SW, Nelson J, Arenas FA, Piotrowski JS, Myers CL, Mori H, Vásquez CC. Accumulation of heme biosynthetic intermediates contributes to the antibacterial action of the metalloid tellurite. Nature Communications, 2017, 8:15320.
    [11] Tantaleán JC, Araya MA, Saavedra CP, Fuentes DE, Pérez JM, Calderón IL, Youderian P, Vásquez CC. The Geobacillus stearothermophilus V iscS gene, encoding cysteine desulfurase, confers resistance to potassium tellurite in Escherichia coli K-12. Journal of Bacteriology, 2003, 185(19):5831-5837.
    [12] Vrionis HA, Wang SY, Haslam B, Turner RJ. Selenite protection of tellurite toxicity toward Escherichia coli. Frontiers in Molecular Biosciences, 2015, 2:69.
    [13] Anaganti N, Basu B, Gupta A, Joseph D, Apte SK. Depletion of reduction potential and key energy generation metabolic enzymes underlies tellurite toxicity in Deinococcus radiodurans. Proteomics, 2015, 15(1):89-97.
    [14] Evans TG. Considerations for the use of transcriptomics in identifying the'genes that matter'for environmental adaptation. The Journal of Experimental Biology, 2015, 218(Pt 12):1925-1935.
    [15] Molina-Quiroz RC, Loyola DE, Díaz-Vásquez WA, Arenas FA, Urzúa U, Pérez-Donoso JM, Vásquez CC. Global transcriptomic analysis uncovers a switch to anaerobic metabolism in tellurite-exposed Escherichia coli. Research in Microbiology, 2014, 165(7):566-570.
    [16] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 2001, 25(4):402-408.
    [17] Schmeing TM, Ramakrishnan V. What recent ribosome structures have revealed about the mechanism of translation. Nature, 2009, 461(7268):1234-1242.
    [18] Cerretti DP, Dean D, Davis GR, Bedwell DM, Nomura M. The spcrtbosomal protein operon of Eschenchia coli:sequence and cotranscriptlon of the rlbosomal protein genes and a protein export gene. Nucleic Acids Research, 1983, 11(9):2599-2616.
    [19] Li X, Lindahl L, Zengel JM. Ribosomal protein L4 from Escherichia coli utilizes nonidentical determinants for its structural and regulatory functions. RNA:New York, N Y, 1996, 2(1):24-37.
    [20] Zurawski G, Zurawski SM. Structure of the Escherichia coli S10 ribosomal protein operon. Nucleic Acids Research, 1985, 13(12):4521-4526.
    [21] Oberto J, Bonnefoy E, Mouray E, Pellegrini O, Wikström PM, Rouvière-Yaniv J. The Escherichia coli ribosomal protein S16 is an endonuclease. Molecular Microbiology, 1996, 19(6):1319-1330.
    [22] Persson BC, Bylund GO, Berg DE, Wikström PM. Functional analysis of the ffh-trmD region of the Escherichia coli chromosome by using reverse genetics. Journal of Bacteriology, 1995, 177(19):5554-5560.
    [23] Yates JL, Nomura M. E. coli ribosomal protein L4 is a feedback regulatory protein. Cell, 1980, 21(2):517-522.
    [24] Zengel JM, Mueckl D, Lindahl L. Protein L4 of the E. coli ribosome regulates an eleven gene r protein operon. Cell, 1980, 21(2):523-535.
    [25] Singh D, Chang SJ, Lin PH, Averina OV, Kaberdin VR, Lin-Chao SE. Regulation of ribonuclease E activity by the L4 ribosomal protein of Escherichia coli. PNAS, 2009, 106(3):864-869.
    [26] Jagannathan I, Culver GM. Assembly of the central domain of the 30S ribosomal subunit:roles for the primary binding ribosomal proteins S15 and S8. Journal of Molecular Biology, 2003, 330(2):373-383.
    [27] VanNice J, Gregory ST, Kamath D, O'Connor M. Alterations in ribosomal protein L19 that decrease the fidelity of translation. Biochimie, 2016, 128/129:122-126.
    [28] Yonekura K, Maki-Yonekura S, Namba K. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature, 2003, 424(6949):643-650.
    [29] Zhuang XY, Guo SH, Li ZR, Zhao ZY, Kojima S, Homma M, Wang PY, Lo CJ, Bai F. Live-cell fluorescence imaging reveals dynamic production and loss of bacterial flagella. Molecular Microbiology, 2020, 114(2):279-291.
    [30] Mudge MC, Nunn BL, Firth E, Ewert M, Hales K, Fondrie WE, Noble WS, Toner J, Light B, Junge KA. Subzero, saline incubations of Colwellia psychrerythraea reveal strategies and biomarkers for sustained life in extreme icy environments. Environmental Microbiology, 2021, 23(7):3840-3866.
    [31] Fitzgerald DM, Bonocora RP, Wade JT. Comprehensive mapping of the Escherichia coli flagellar regulatory network. PLoS Genetics, 2014, 10(10):e1004649.
    [32] Akiba T, Yoshimura H, Namba K. Monolayer crystallization of flagellar L-P rings by sequential addition and depletion of lipid. Science, 1991, 252(5012):1544-1546.
    [33] Minamino T, Imada K. The bacterial flagellar motor and its structural diversity. Trends in Microbiology, 2015, 23(5):267-274.
    [34] Müller V, Jones CJ, Kawagishi I, Aizawa S, MacNab RM. Characterization of the fliE genes of Escherichia coli and Salmonella typhimurium and identification of the FliE protein as a component of the flagellar hook-basal body complex. Journal of Bacteriology, 1992, 174(7):2298-2304.
    [35] Yang SY, Schulz H. The large subunit of the fatty acid oxidation complex from Escherichia coli is a multifunctional polypeptide. Evidence for the existence of a fatty acid oxidation operon (fad AB) in Escherichia coli. Journal of Biological Chemistry, 1983, 258(16):9780-9785.
    [36] Goss TJ, Datta P. Escherichia coli K-12 mutation that inactivates biodegradative threonine dehydratase by transposon Tn5 insertion. Journal of Bacteriology, 1984, 158(3):826-831.
    [37] Richaud C, Richaud F, Martin C, Haziza C, Patte JC. Regulation of expression and nucleotide sequence of the Escherichia coli dapD gene. Journal of Biological Chemistry, 1984, 259(23):14824-14828.
    [38] Kurihara S, Oda S, Kumagai H, Suzuki H. Gamma-glutamyl-gamma-aminobutyrate hydrolase in the putrescine utilization pathway of Escherichia coli K-12. FEMS Microbiology Letters, 2006, 256(2):318-323.
    [39] Vimr ER, Troy FA. Identification of an inducible catabolic system for sialic acids (Nan) in Escherichia coli. Journal of Bacteriology, 1985, 164(2):845-853.
    [40] Phillips GJ, Silhavy TJ. The4, 63:915-948.
    [69] Giroux X, Su WL, Bredeche MF, Matic I. Maladaptive DNA repair is the ultimate contributor to the death of trimethoprim-treated cells under aerobic and anaerobic conditions. PNAS, 2017, 114(43):11512-11517.on of PKM and PEPCK. Cold Spring Harbor Symposia on Quantitative Biology, 2011, 76:285-289.
    [42] Aristarkhov A, Mikulskis A, Belasco JG, Lin EC. Translation of the adhE transcript to produce ethanol dehydrogenase requires RNase III cleavage in Escherichia coli. Journal of Bacteriology, 1996, 178(14):4327-4332.
    [43] Maulucci G, Cohen O, Daniel B, Sansone A, Petropoulou PI, Filou S, Spyridonidis A, Pani G, De Spirito M, Chatgilialoglu C, Ferreri C, Kypreos KE, Sasson S. Fatty acid-related modulations of membrane fluidity in cells:detection and implications. Free Radical Research, 2016, 50(sup1):S40-S50.
    [44] Tremaroli V, Fedi S, Zannoni D. Evidence for a tellurite-dependent generation of reactive oxygen species and absence of a tellurite-mediated adaptive response to oxidative stress in cells of Pseudomonas pseudoalcaligenes KF707. Archives of Microbiology, 2007, 187(2):127-135.
    [45] Pérez JM, Calderón IL, Arenas FA, Fuentes DE, Pradenas GA, Fuentes EL, Sandoval JM, Castro ME, Elías AO, Vásquez CC. Bacterial toxicity of potassium tellurite:unveiling an ancient Enigma. PLoS One, 2007, 2(2):e211.
    [46] Lilley E, Patrick N, Stamford J, Vasudevan SG, Dixon NE. The 92-Min region of the Escherichia coli chromosome:location and cloning of the ubi and alr. Gene, 1993, 129(1):9-16.
    [47] Campos E, Montella C, Garces F, Baldoma L, Aguilar J, Badia J. Aerobic L-ascorbate metabolism and associated oxidative stress in Escherichia coli. Microbiology:Reading, England, 2007, 153(Pt 10):3399-3408.
    [48] Kirby TW, Hindenach BR, Greene RC. Regulation of in vivo transcription of the Escherichia coli K-12metJBLF gene cluster. Journal of Bacteriology, 1986, 165(3):671-677.
    [49] Niederhoffer EC, Naranjo CM, Bradley KL, Fee JA. Control of Escherichia coli superoxide dismutase (sodA and sodB) genes by the ferric uptake regulation (fur) locus. Journal of Bacteriology, 1990, 172(4):1930-1938.
    [50] Wu J, Weiss B. Two divergently transcribed genes, soxR and soxS, control a superoxide response regulon of Escherichia coli. Journal of Bacteriology, 1991, 173(9):2864-2871.
    [51] Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU. Molecular chaperone functions in protein folding and proteostasis. Annual Review of Biochemistry, 2013, 82:323-355.
    [52] Bhandari V, Houry WA. Substrate interaction networks of the Escherichia coli chaperones:trigger factor, DnaK and GroEL. Advances in Experimental Medicine and Biology, 2015, 883:271-294.
    [53] Cohen SP, McMurry LM, Levy SB. marA locus causes decreased expression of OmpF porin in multiple-antibiotic-resistant (Mar) mutants of Escherichia coli. Journal of Bacteriology, 1988, 170(12):5416-5422.
    [54] Martin RG, Rosner JL. Binding of purified multiple antibiotic-resistance repressor protein (MarR) to mar operator sequences. PNAS, 1995, 92(12):5456-5460.
    [55] Holmqvist E, Vogel J. A small RNA serving both the Hfq and CsrA regulons. Genes& Development, 2013, 27(10):1073-1078.
    [56] Foster PL. Stress responses and genetic variation in bacteria. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 569(1/2):3-11.
    [57] Xu C, Shi W, Rosen BP. The chromosomal arsR gene of Escherichia coli encodes a trans-acting metalloregulatory protein. The Journal of Biological Chemistry, 1996, 271(5):2427-2432.
    [58] Ohyama T, Igarashi K, Kobayashi H. Physiological role of the chaA gene in sodium and calcium circulations at a high pH in Escherichia coli. Journal of Bacteriology, 1994, 176(14):4311-4315.
    [59] Sharma R, Rensing C, Rosen BP, Mitra B. The ATP hydrolytic activity of purified ZntA, a Pb (II)/Cd (II)/Zn (II)-translocating ATPase from Escherichia coli. Journal of Biological Chemistry, 2000, 275(6):3873-3878.
    [60] Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A, Holton JM, Cate JH. Structures of the bacterial ribosome at 3.5 A resolution. Science, 2005, 310(5749):827-834.
    [61] Imazawa R, Takahashi Y, Aoki W, Sano M, Ito M. A novel type bacterial flagellar motor that can use divalent cations as a coupling ion. Scientific Reports, 2016, 6:19773.
    [62] Wang HB, Yin XF, Wu Orr M, Dambach M, Curtis R, Storz G. Increasing intracellular magnesium levels with the 31-amino acid MgtS protein. PNAS, 2017, 114(22):5689-5694.
    [63] Moon K, Six DA, Lee HJ, Raetz CRH, Gottesman S. Complex transcriptional and post-transcriptional regulation of an enzyme for lipopolysaccharide modification. Molecular Microbiology, 2013, 89(1):52-64.
    [64] Yin XF, Wu Orr M, Wang HB, Hobbs EC, Shabalina SA, Storz G. The small protein MgtS and small RNA MgrR modulate the PitA phosphate symporter to boost intracellular magnesium levels. Molecular Microbiology, 2019, 111(1):131-144.
    [65] Martin JE, Waters LS, Storz G, Imlay JA. The Escherichia coli small protein MntS and exporter MntP optimize the intracellular concentration of manganese. PLoS Genetics, 2015, 11(3):e1004977.
    [66] King MM, Kayastha BB, Franklin MJ, Patrauchan MA. Calcium regulation of bacterial virulence. Advances in Experimental Medicine and Biology.Cham:Springer International Publishing, 2019:827-855.
    [67] Arunima A, Swain SK, Patra SD, Das S, Mohakud NK, Misra N, Suar M. Role of OB-fold protein YdeI in stress response and virulence of Salmonella enterica serovar enteritidis. Journal of Bacteriology, 2020, 203(1):e00237-e00220.
    [68] Demple B, Harrison L. Repair of oxidative damage to DNA:enzymology and biology. Annual Review of Biochemistry, 199
    引证文献
引用本文

胡苏姝,彭万里,林双君,邓子新,梁如冰. 基于转录组分析大肠杆菌响应亚碲酸盐的机制[J]. 微生物学报, 2022, 62(7): 2702-2718

复制
分享
文章指标
  • 点击次数:376
  • 下载次数: 1173
  • HTML阅读次数: 742
  • 引用次数: 0
历史
  • 收稿日期:2021-11-09
  • 最后修改日期:2021-12-07
  • 在线发布日期: 2022-07-06
  • 出版日期: 2022-07-04
文章二维码