辣椒镰孢根腐病防病促生细菌的筛选及其效应
作者:
基金项目:

嘉峪关市科技计划(19-20);甘肃农业大学学生科研训练计划(202102024);甘肃省科技计划(20YF3NA021)


The Fusarium root rot-controlling effect and growth-promoting effect of the bacteria in the rhizosphere of Capsicum annuum
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [45]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】筛选辣椒(Capsicum annuumL.)根腐病防病促生细菌并明确其防病促生效应。【方法】采集健康辣椒根围土壤样品,以辣椒根腐病病原真菌茄镰孢(Fusarium solani)和尖镰孢(Fusarium oxysporum)为指示菌,采用平板对峙法筛选生防细菌,采用选择性培养基筛选溶无机磷、溶有机磷、固氮菌和解钾菌等促生菌,钼锑抗比色法测定溶磷量,凯氏定氮法测定固氮量,火焰原子吸收光谱法测定解钾量。对特性良好组合的菌株进行16S rDNA序列分析鉴定并制作菌剂,最后采用盆栽法测定菌剂防病促生效果。【结果】共筛选得到323株特性良好的功能菌株,拮抗菌78株,溶有机磷菌87株,溶无机磷菌107株,固氮菌128株,解钾菌123株,部分菌株同时具有多个功能特性。互作组合得到6个特性良好的菌株组合,包括8株功能菌株,鉴定发现XP271和XP181为枯草芽胞杆菌(Bacillus subtilis),XP125为特基拉芽胞杆菌(Bacillus tequilensis),XP236为耐盐芽胞杆菌(Bacillus halotolerans),XP79为巨大芽胞杆菌(Bacillus megaterium),XP171为环状芽胞杆菌(Bacillus circulans),XP248为芬氏纤维微菌(Cellulosimicrobium funkei),XP167为产黄假单胞菌(Pseudomonas synxantha)。选择2种优良组合制作菌剂,测定其防病促生效果发现,对辣椒镰孢根腐病的防效达88.52%,并使辣椒株高增加10 cm左右、分枝数平均增加2个、生物量增加5–21 g;辣椒根围土壤中碱解氮、速效磷、速效钾等土壤养分含量增加,脲酶、蔗糖酶、碱性磷酸酶等土壤酶活性增加,土壤过氧化氢酶含量降低;土壤微生物生物量碳、固氮基因、固氮微生物的含量均显著增加。【结论】辣椒根围土壤中含有功能良好防病促生菌株,制成菌剂对辣椒镰孢根腐病有良好的防效且对辣椒促生性能明显。

    Abstract:

    [Objective] To screen out the bacterial strains that can control the Fusarium root rot and promote the growth of Capsicum annuum L. and clarify their disease-controlling and growth-promoting effects. [Methods] The soil samples were collected from the rhizosphere of healthy C.annuum plants, and then plate confrontation method was employed to screen the biocontrol bacteria with Fusarium solani and F.oxysporum as the indicator fungi. After that, selective media were used to screen the growth-promoting bacteria with inorganic phosphorus-solubilizing, organic phosphorus-solubilizing, nitrogen-fixing, or potassium-solubilizing activities. Further, the disease-controlling and growth-promoting effects of the selected strains were determined qualitatively and quantitatively. The amount of phosphorus solubilized, nitrogen fixed, and potassium solubilized were respectively determined by molybdenum-antimony anti-colorimetric method, Kjeldahl method, and flame atomic absorption spectrometry. We then determined the 16S rDNA sequences of the strains with excellent characteristics and prepared the bacterial inoculants with different combination formula. Finally, pot experiments were carried out to measure the disease-controlling and growth-promoting effects of the inoculants. [Results] We screened out 323 strains with excellent functions, including 78 antagonistic strains, 87 organic phosphorus-solubilizing strains, 107 inorganic phosphorus-solubilizing strains, 128 nitrogen-fixing strains, and 123 potassium-solubilizing strains. Some strains had multiple functions, and 6 combinations with excellent characteristics were obtained, which involved 8 strains. Strains XP271 and XP181 were identified as Bacillus subtilis, XP125 as B.tequilensis, XP236 as B.halotolerans, XP79 as B.megaterium, XP171 as B.circulans, XP248 as Cellulosimicrobium funkei, and XP167 as Pseudomonas synxantha. The inoculants were prepared according to two combination formula, which demonstrated the best controlling effect of 88.52% on Fusarium root rot and increased the plant height, branch number, and biomass of C.annuum by about 10 cm, 2 branches, and 5-21 g. Moreover, after the inoculation, the content of available nitrogen, available phosphorus and available potassium in the rhizosphere soil, as well as the activities of soil enzymes such as urease, sucrase, and alkaline phosphatase increased, while the activity of soil catalase decreased. Additionally, the microbial biomass carbon, nitrogen-fixing genes, and nitrogen-fixing microorganisms in the soil increased significantly. [Conclusion] The rhizosphere soil of C.annuum harbors rich bacteria with excellent disease-controlling and growth-promoting effects, which can be prepared into inoculants for the control of Fusarium root rot and the growth-promoting on C.annuum.

    参考文献
    [1] Ikeda K. Role of perithecia as an inoculum source for stem rot type of pepper root rot caused by Fusarium solani f. sp. Piperis(teleomorph:Nectria haematococca f. sp. Piperis). Journal of General Plant Pathology, 2010, 76(4):241-246.
    [2] Pérez-Hernández A, Serrano-Alonso Y, Aguilar-Pérez MI, Gómez-Uroz R, Gómez-Vázquez J. Damping-off and root rot of pepper caused by Fusarium oxysporum in Almería Province, Spain. Plant Disease, 2014, 98(8):1159.
    [3] Jaber LR, Alananbeh KM. Fungal entomopathogens as endophytes reduce several species of Fusarium causing crown and root rot in sweet pepper (Capsicum annuum L.). Biological Control, 2018, 126:117-126.
    [4] Bagheri LM, Nasr-Esfahani M, Abdossi V, Naderi D. Analysis of candidate genes expression associated with defense responses to root and collar rot disease caused by Phytophthora capsici in peppers Capsicum annuum. Genomics, 2020, 112(3):2309-2317.
    [5] Sasanelli N, D'Addabbo T, Mancini L. Suppressive effect of composted olive mill wastes soil amendments on the root-knot nematode Meloidogyne incognita. Acta Horticulturae, 2011, 914:229-231.
    [6] 姜飞,刘业霞,刘伟,郑楠,王洪涛,艾希珍.嫁接辣椒根腐病抗性及其与苯丙烷类物质代谢的关系.中国蔬菜, 2010, 8:46-52.Jiang F, Liu YX, Liu W, Zheng N, Wang HT, Ai XZ. Relationship between root rot resistance and phenylaprapanoid metabolism in graft Capsicum. China Vegetables, 2010, 8:46-52.(in Chinese)
    [7] 高杜娟,唐善军,陈友德,周斌.水稻主要病害生物防治的研究进展.中国农学通报, 2019, 35(26):140-147.Gao DJ, Tang SJ, Chen YD, Zhou B. Biological control of major rice diseases:a review. Chinese Agricultural Science Bulletin, 2019, 35(26):140-147.(in Chinese)
    [8] Ezziyyani M, Requena ME, Egea-Gilabert C, Candela ME. Biological control of Phytophthora root rot of pepper using Trichoderma harzianum and Streptomyces rochei in combination. Journal of Phytopathology, 2007, 155(6):342-349.
    [9] Ma Y, Chang ZZ, Zhao JT, Zhou MG. Antifungal activity of Penicillium striatisporum Pst10 and its biocontrol effect on Phytophthora root rot of chilli pepper. Biological Control, 2008, 44(1):24-31.
    [10] 曲春鹤,何付丽,刘培福,纪明山,赵长山,高黎力.辣椒根腐病拮抗细菌的筛选、鉴定及其抑菌促生作用.东北农业大学学报, 2012, 43(7):89-94.Qu CH, He FL, Liu PF, Ji MS, Zhao CS, Gao LL. Selection and identification of antagonistic bacteria against Fusarium solani and its effect. Journal of Northeast Agricultural University, 2012, 43(7):89-94.(in Chinese)
    [11] 朱辉,姚良同,田方,杜秉海,丁延芹.辣椒根腐病拮抗细菌的筛选及其生物学特性研究.生物技术通报, 2008(1):156-159.Zhu H, Yao LT, Tian F, Du BH, Ding YQ. Screening and study on biological characteristics of antagonistic bacteria against Fusarium solani. Biotechnology Bulletin, 2008(1):156-159.(in Chinese)
    [12] 陈建爱,周善跃,杨焕明,裘纪莹,杜方岭.黄绿木霉T1010防治辣椒根腐病茄镰孢.农学学报, 2012, 2(10):14-18, 25.Chen JN, Zhou SY, Yang HM, Qiu JY, Du FL. Biocontrol of pepper root rot caused by Fusarium solani with Trichoderma aureoviride 1010. Journal of Agriculture, 2012, 2(10):14-18, 25.(in Chinese)
    [13] Kloepper JW. Relationship of in vitro antibiosis of plant growth-promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology, 1981, 71(10):1020.
    [14] Tariq M, Ali Q, Khan A, Khan GA, Rashid B, Rahi MS, Ali A, Nasir IA, Husnain T. Yieldpotential study of Capsicum annuum L. under the application of PGPR. Advances in Life Science and Technology, 2014, 1(4):202-207.
    [15] Mandyal P, Kaushal R, Sharma K, Kaushal M. Evaluation of native PGPR isolates in bell pepper for enhanced growth, yield and fruit quality. International Journal of Farm Sciences, 2012, 2(2):28-35.
    [16] 吕雅悠,于迪,丁方丽,朴凤植,申顺善.促植物生长根际细菌A21-4对田间辣椒生长及根际土壤微生态环境的影响.中国生物防治学报, 2016, 32(1):86-92.Lü YY, Yu D, Ding FL, Piao FZ, Shen SS. Effects of PGPR strain A21-4 on growth and rhizosphere soil charactors of pepper in field. Chinese Journal of Biological Control, 2016, 32(1):86-92.(in Chinese)
    [17] 黄文茂,詹永发,王欢,韩丽珍. PGPR菌剂对辣椒的促生效应及根际土壤细菌的响应研究.中国土壤与肥料, 2020(5):152-160.Huang WM, Zhan YF, Wang H, Han LZ. Growth-promoting effects of PGPR microbial agent on chilli and response of rhizosphere soil bacteria. Soil and Fertilizer Sciences in China, 2020(5):152-160.(in Chinese)
    [18] 黄文茂,易伦,彭思云,黄承森,程代松,韩丽珍. PGPR复合菌剂对辣椒生长及根际土壤微生物结构的影响.中国土壤与肥料, 2020(1):195-201.Huang WM, Yi L, Peng SY, Huang CS, Cheng DS, Han LZ. Effect of PGPR compound bacterial agents on growth of chilli and changes of soil microbial structure. Soil and Fertilizer Sciences in China, 2020(1):195-201.(in Chinese)
    [19] 何付丽,曲春鹤,赵长山,刘培福,黄长权,纪明山.生防细菌II621防治辣椒根腐病的效果及对辣椒的促生作用, 2010 First International Conference on Cellular, Molecular Biology, Biophysics and Bioengineering (CMBB), 2010:129-132.He FL, Qu CH, Zhao CS, Liu PF, Huang CQ, Ji MS. Pepper growth promoting and disease inhabiting by an antagonistic bacterium II621. 2010 First International Conference on Cellular, Molecular Biology, Biophysics and Bioengineering (CMBB). 2010:129-132.(in Chinese)
    [20] 杨茉,高婷,李滟璟,魏崇瑶,高淼,马莲菊.辣椒根际促生菌的分离筛选及抗病促生特性研究.生物技术通报, 2020, 36(5):104-109.Yang M, Gao T, Li YJ, Wei CY, Gao M, Ma LJ. Isolation and screening of plant growth-promoting rhizobacteria in pepper and their disease-resistant growth-promoting characteristics. Biotechnology Bulletin, 2020, 36(5):104-109.(in Chinese)
    [21] 鲍士旦.土壤农化分析3版.北京:中国农业出版社, 2000.
    [22] 李雪萍,李建宏,李敏权,孟宪刚.浆水中降胆固醇乳酸菌的筛选及其功能特性.微生物学报, 2015, 55(8):1001-1009.Li XP, Li JH, Li MQ, Meng XG. Screening and functional properties of cholesteroldegrading lactic acid bacteria from Jiangshui. Acta Microbiologica Sinica, 2015, 55(8):1001-1009.(in Chinese)
    [23] 李林,齐军山,李长松,徐作珽.主要辣椒品种对疫病、根腐病的抗性鉴定.山东农业科学, 2001, 33(2):29-30.Li L, Qi JS, Li CS, Xu ZT. Identification of resistance of main pepper varieties to blight and root rot. Shandong Agricultural Sciences, 2001, 33(2):29-30.(in Chinese)
    [24] 张兆永,李菊英,祖皮艳木·买买提,叶庆富.艾比湖流域小尺度农田土壤养分的空间分布和盐渍化风险评价.生态学报, 2017, 37(3):819-828.Zhang ZY, Li JY, Zulpiya M, Ye QF. Spatial heterogeneity of soil nutrients and salinization risk assessment of a small-scale farmland in Ebinur Basin in Northwest China. Acta Ecologica Sinica, 2017, 37(3):819-828.(in Chinese)
    [25] 李雪萍,李建宏,漆永红,郭炜,李潇,李敏权.青稞根腐病对根际土壤微生物及酶活性的影响.生态学报, 2017, 37(17):5640-5649.Li XP, Li JH, Qi YH, Guo W, Li X, Li MQ. Effects of naked barley root rot on rhizosphere soil microorganisms and enzyme activity. Acta Ecologica Sinica, 2017, 37(17):5640-5649.(in Chinese)
    [26] Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC. Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure. Soil Biology and Biochemistry, 1990, 22(8):1167-1169.
    [27] 吴小虎.氟磺胺草醚对土壤微生物多样性的影响.中国农业科学院博士学位论文, 2014.
    [28] 姚拓,龙瑞军,师尚礼,张德罡.高寒草地不同扰动生境土壤微生物氮素生理群数量特征研究.土壤学报, 2007, 44(1):122-129.Yao T, Long RJ, Shi SL, Zhang DG. Populations of soil nitrogen bacteria groups in alpine steppe of different disturbed habitats in Tianzhu. Acta Pedologica Sinica, 2007, 44(1):122-129.(in Chinese)
    [29] Kandel SL, Joubert PM, Doty SL. Bacterial endophyte colonization and distribution within plants. Microorganisms, 2017, 5(4):77.
    [30] Verma SK, Kingsley K, Irizarry I, Bergen M, Kharwar RN, White JF Jr. Seed-vectored endophytic bacteria modulate development of rice seedlings. Journal of Applied Microbiology, 2017, 122(6):1680-1691.
    [31] Compant S, Duffy B, Nowak J, Clément C, Barka EA. Use of plant growth-promoting bacteria for biocontrol of plant diseases:principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 2005, 71(9):4951-4959.
    [32] 陈建爱,贾梦莹,陈为京. PDA中水含量对固体培养黄绿木霉T1010分生孢子生长发育的影响.中国农学通报, 2020, 36(15):106-114.Chen JA, Jia MY, Chen WJ. Water content in PDA:influence on growth and development of Trichoderma aureoviride T1010 conidia on solid medium. Chinese Agricultural Science Bulletin, 2020, 36(15):106-114.(in Chinese)
    [33] Mahdi I. Potential application of selected phosphate solubilizing bacteria isolated from Chenopodium quinoa Willd rhizosphere in early plant growthpromotion. Enzyme Engineering, 2021, 10(5):3.
    [34] 吴红艳,于淼,冯健,冯敏.利用GFP标记研究秸秆还田对假单胞菌PW9土壤定殖能力的影响.西南农业学报, 2021, 34(6):1257-1261.Wu HY, Yu M, Feng J, Feng M. Effect of straw mulching on soil colonization of Pseudomonas PW9 by GFP marker. Southwest China Journal of Agricultural Sciences, 2021, 34(6):1257-1261.(in Chinese)
    [35] 撖冬荣,侯栋,姚拓,兰晓君,朱瑞婷.莴笋根部促生菌筛选与促生特性测定.干旱地区农业研究, 2020, 38(3):127-133.Han DR, Hou D, Yao T, Lan XJ, Zhu RT. Lettuce root growth promoting bacteria screening and determination of growth promoting properties. Agricultural Research in the Arid Areas, 2020, 38(3):127-133.(in Chinese)
    [36] 马骢毓,姚拓.黑果枸杞根际促生菌筛选与特性研究.草原与草坪, 2018, 38(2):73-79.Ma CY, Yao T. Identification of plant growth promoting rhizobacteria Lycium ruthenicum and their effectives. Grassland and Turf, 2018, 38(2):73-79.(in Chinese)
    [37] 李海云,姚拓,张榕,张洁,李智燕,荣良燕,路晓雯,杨晓蕾,夏东慧,罗慧琴.红三叶根际溶磷菌株分泌有机酸与溶磷能力的相关性研究.草业学报, 2018, 27(12):113-121.Li HY, Yao T, Zhang R, Zhang J, Li ZY, Rong LY, Lu XW, Yang XL, Xia DH, Luo HQ. Relationship between organic acids secreted from rhizosphere phosphate-solubilizing bacteria in Trifolium pratense and phosphate-solubilizing ability. Acta Prataculturae Sinica, 2018, 27(12):113-121.(in Chinese)
    [38] 赖宝春,戴瑞卿,林明辉,吴振强,王家瑞.一株拮抗放线菌的鉴定及其对香蕉枯萎病的生防效应.南方农业学报, 2020, 51(4):836-843.Lai BC, Dai RQ, Lin MH, Wu ZQ, Wang JR. Identification of an antagonistic actinomycetes and its biological control effect on banana Fusarium wilt. Journal of Southern Agriculture, 2020, 51(4):836-843.(in Chinese)
    [39] 晋治波,解玲,王幼珊,孔宇,刘芳,朱正杰.不同基质中番茄菌根苗的培育及其抗南方根结线虫的效果.菌物学报, 2021, 40(5):1087-1098.Jin ZB, Xie L, Wang YS, Kong Y, Liu F, Zhu ZJ. Effects of different cultivation substrates on the tomato seedling mycorrhization and Meloidogyne incognita infestation under condition of inoculation with arbuscular mycorrhizal fungi. Mycosystema, 2021, 40(5):1087-1098.(in Chinese)
    [40] 叶明,陶涛,陈吴西.一种解磷菌剂的研制及其应用效果.浙江大学学报:农业与生命科学版, 2010, 36(6):657-661.Ye M, Tao T, Chen WX. Development and application of a phosphate-dissolving bacteria agent. Journal of Zhejiang University:Agriculture and Life Sciences, 2010, 36(6):657-661.(in Chinese)
    [41] 毛晓洁,王新民,赵英,周义清,孙建光.多功能固氮菌筛选及其在土壤生态修复中的应用.生物技术通报, 2017, 33(10):148-155.Mao XJ, Wang XM, Zhao Y, Zhou YQ, Sun JG. Screening of multi-functional nitrogen fixing bacteria and their application in soil ecological restoration. Biotechnology Bulletin, 2017, 33(10):148-155.(in Chinese)
    [42] 刘云芬,王薇薇,祖艳侠,梅燚,郑佳秋,吴永成,郭军,陈中兵.过氧化氢酶在植物抗逆中的研究进展.大麦与谷类科学, 2019, 36(1):5-8.Liu YF, Wang WW, Zu YX, Mei Y, Zheng JQ, Wu YC, Guo J, Chen ZB. Research progress on the effects of catalase on plant stress tolerance. Barley and Cereal Sciences, 2019, 36(1):5-8.(in Chinese)
    [43] 林青,曾军,史应武,杨红梅,张涛,高雁,楚敏,王斌,王金鑫,孙九胜,霍向东.聚对苯二甲酸-己二酸丁二酯生物降解膜对土壤酶活性的影响.新疆农业科学, 2021, 58(1):125-132.Lin Q, Zeng J, Shi YW, Yang HM, Zhang T, Gao Y, Chu M, Wang B, Wang JX, Sun JS, Huo XD. Effect of poly (butylene adipate-co-terephthalate)-biodegradable mulch film on soil enzyme activity. Xinjiang Agricultural Sciences, 2021, 58(1):125-132.(in Chinese)
    [44] Kloepper JW, Beauchamp CJ. A review of issues related to measuring colonization of plant roots by bacteria. Canadian Journal of Microbiology, 1992, 38(12):1219-1232.
    [45] 徐立鸿,苏远平,梁毓明.面向控制的温室系统小气候环境模型要求与现状.农业工程学报, 2013, 29(19):1-15.Xu LH, Su YP, Liang YM. Requirement and current situation of control-oriented microclimate environmental model in greenhouse system. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(19):1-15.(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

许世洋,范雨轩,汪学苗,张怡忻,柴继宽,李建军,李敏权,漆永红,李雪萍. 辣椒镰孢根腐病防病促生细菌的筛选及其效应[J]. 微生物学报, 2022, 62(7): 2735-2750

复制
分享
文章指标
  • 点击次数:393
  • 下载次数: 1134
  • HTML阅读次数: 1075
  • 引用次数: 0
历史
  • 收稿日期:2021-11-12
  • 最后修改日期:2022-01-14
  • 在线发布日期: 2022-07-06
  • 出版日期: 2022-07-04
文章二维码