原料乳冷藏过程中微生物细胞的宏蛋白组学分析
作者:
基金项目:

宁夏回族自治区自然科学基金(2021AAC03036);国家自然科学基金(31760479);宁夏大学研究生创新项目(GIP2021-28)


Metaproteomic analysis of microbial cells during cold storage of raw milk
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    原料乳在投入生产前通常需4℃冷藏,在这个过程中微生物的污染将造成冷藏原料乳的变质。【目的】本文旨在分子水平上探究原料乳冷藏过程中微生物表达的差异蛋白质的动态变化,为原料乳的冷藏提供理论支撑。【方法】利用Label-free技术研究原料乳4℃冷藏6 d期间微生物菌体蛋白质的物种来源、功能及参与通路,筛选差异蛋白质并对主要差异蛋白质参与的通路进行富集,探究其变化规律。【结果】冷藏过程中共鉴定出341个微生物菌体蛋白质,其中冷藏3 d后产生的蛋白质占所有检出蛋白质的60.12%。COG及KEGG分析表明,蛋白质所体现的功能及参与的通路随时间而变化。冷藏4 d,参与糖酵解/糖异生、ABC转运蛋白、氨基糖和核苷酸糖代谢等通路的蛋白数量显著增加。随冷藏时间延长,相邻时间点差异蛋白质数目逐渐增多,且富集在不同的通路中。【结论】冷藏过程中原料乳中的微生物所产生的蛋白质参与的通路及其所体现的功能复杂,4 d时的变化最为明显,或可作为原料乳质量控制的关键节点。

    Abstract:

    Raw milk usually needs to be refrigerated at 4 ℃ before being put into production. In this process, microbial contamination will cause deterioration of the refrigerated milk.[Objective] To investigate the dynamic changes of differential proteins expressed by microorganisms during raw milk refrigeration and thereby to lay a theoretical foundation for raw milk refrigeration [Methods] Label-free technology was used to study the species origins and functions of microbial proteins during the 6-day cold storage of raw milk at 4 ℃ and the pathways involved, screen differential proteins, and explore the pathways of the main differential proteins to explore their changing laws.[Results] A total of 341 microbial proteins were identified during refrigeration, of which 60.12% were detected after 3 days of freezing. The analysis of the cluster of orthologous groups (COG) of proteins and kyoto encyclopedia of genes and genomes (KEGG) suggested that the functions of the proteins and the pathways involved changed with time. The number of proteins involved in glycolysis/gluconeogenesis, ATP-binding cassette (ABC) transporter, amino sugar and nucleotide sugar metabolism increased significantly after 4 days of cold storage. The number of differential proteins at adjacent time points gradually increased over time, and different pathways were enriched for them. [Conclusion] The pathways involved in the proteins produced by microorganisms in raw milk during refrigeration and the functions are complex, with the most obvious changes on the 4th day, which may be a key time point for quality control of raw milk.

    参考文献
    [1] Li L, Renye JA Jr, Feng L, Zeng QK, Tang Y, Huang L, Ren DX, Yang P. Characterization of the indigenous microflora in raw and pasteurized buffalo milk during storage at refrigeration temperature by high-throughput sequencing. Journal of Dairy Science, 2016, 99(9):7016-7024.
    [2] Von Neubeck M, Baur C, Krewinkel M, Stoeckel M, Kranz B, Stressler T, Fischer L, Hinrichs J, Scherer S, Wenning M. Biodiversity of refrigerated raw milk microbiota and their enzymatic spoilage potential. International Journal of Food Microbiology, 2015, 211:57-65.
    [3] Salgado CA, De Almeida FA, Barros E, Baracat-Pereira MC, Baglinière F, Vanetti MCD. Identification and characterization of a polyurethanase with lipase activity from Serratia liquefaciens isolated from cold raw cow's milk. Food Chemistry, 2021, 337:127954.
    [4] Bekker A, Jooste P, Steyn L, Bothma C, Hugo A, Hugo C. Lipid breakdown and sensory analysis of milk inoculated with Chryseobacterium joostei or Pseudomonas fluorescens. International Dairy Journal, 2016, 52:101-106.
    [5] Zhang D, Palmer J, Teh KH, Calinisan MMA, Flint S. Milk fat influences proteolytic enzyme activity of dairy Pseudomonas species. International Journal of Food Microbiology, 2020, 320:108543.
    [6] Hahne J, Isele D, Berning J, Lipski A. The contribution of fast growing, psychrotrophic microorganisms on biodiversity of refrigerated raw cow's milk with high bacterial counts and their food spoilage potential. Food Microbiology, 2019, 79:11-19.
    [7] Porcellato D, Aspholm M, Skeie SB, Monshaugen M, Brendehaug J, Mellegård H. Microbial diversity of consumption milk during processing and storage. International Journal of Food Microbiology, 2018, 266:21-30.
    [8] Ribeiro JC Jr, De Oliveira AM, De G Silva F, Tamanini R, De Oliveira ALM, Beloti V. The main spoilage-related psychrotrophic bacteria in refrigerated raw milk. Journal of Dairy Science, 2018, 101(1):75-83.
    [9] 张树飞,薛玉玲,崔玥,韩俊华,朱宏,王世杰.牛乳中嗜冷菌及其耐热酶研究进展.中国乳品工业, 2020, 48(11):35-38, 44.Zhang SF, Xue YL, Cui Y, Han JH, Zhu H, Wang SJ. Research progress of psychrophilic bacteria and thermostable enzymes in milk. China Dairy Industry, 2020, 48(11):35-38, 44.(in Chinese)
    [10] Schlusselhuber M, Girard L, Cousin FJ, Lood C, De Mot R, Goux D, Desmasures N. Pseudomonas crudilactis sp. nov., isolated from raw milk in France. Antonie Van Leeuwenhoek, 2021, 114(6):719-730.
    [11] Maier C, Hofmann K, Huptas C, Scherer S, Wenning M, Lücking G. Simultaneous quantification of the most common and proteolytic Pseudomonas species in raw milk by multiplex qPCR. Applied Microbiology and Biotechnology, 2021, 105(4):1693-1708.
    [12] Rodríguez-Valera F. Environmental genomics, the big picture?FEMS Microbiology Letters, 2004, 231(2):153-158.
    [13] Hettich RL, Pan CL, Chourey K, Giannone RJ. Metaproteomics:harnessing the power of high performance mass spectrometry to identify the suite of proteins that control metabolic activities in microbial communities. Analytical Chemistry, 2013, 85(9):4203-4214.
    [14] Kowalchuk GA, Heidelberg JF, Bailey MJ. The ISME journal:multidisciplinary journal of microbial ecology. The ISME Journal, 2007, 1(1):1-3.
    [15] Kleiner M. Metaproteomics:much more than measuring gene expression in microbial communities. mSystems, 2019, 4(3):e00115-e00119.
    [16] Neilson KA, Ali NA, Muralidharan S, Mirzaei M, Mariani M, Assadourian G, Lee A, Van Sluyter SC, Haynes PA. Less label, more free:approaches in label-free quantitative mass spectrometry. Proteomics, 2011, 11(4):535-553.
    [17] Zhao CC, Eun JB. Shotgun metagenomics approach reveals the bacterial community and metabolic pathways in commercial Hongeo product, a traditional Korean fermented skate product. Food Research International, 2020, 131:109030.
    [18] Perona JJ, Hadd A. Structural diversity and protein engineering of the aminoacyl-tRNA synthetases. Biochemistry, 2012, 51(44):8705-8729.
    [19] 冯美琴.宏基因组学的研究进展.安徽农业科学, 2008, 36(2):415-416, 479.Feng MQ. Research progress of metagenomics. Journal of Anhui Agricultural Sciences, 2008, 36(2):415-416, 479.(in Chinese)
    [20] Song ZW, Du H, Zhang Y, Xu Y. Unraveling core functional microbiota in traditional solid-state fermentation by high-throughput amplicons and metatranscriptomics sequencing. Frontiers in Microbiology, 2017, 8:1294.
    [21] 马海霞,张丽丽,孙晓萌,张怀强,何明雄,陈冠军,王禄山.基于宏组学方法认识微生物群落及其功能.微生物学通报, 2015, 42(5):902-912.Ma HX, Zhang LL, Sun XM, Zhang HQ, He MX, Chen GJ, Wang LS. Understanding microbial communities and their functions by meta-omics approaches. Microbiology China, 2015, 42(5):902-912.(in Chinese)
    [22] 王媛媛,剧柠,苟萌,罗玉龙,李璞钰.宏基因组学探究原料乳冷藏过程菌群变化规律.农业工程学报, 2020, 36(22):333-340.Wang YY, Ju N, Gou M, Luo YL, Li PY. Metagenomics approach to explore the changes of bacterial community in raw milk during refrigerated storage. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(22):333-340.(in Chinese)
    [23] 吴重德,黄钧,周荣清.宏蛋白质组学研究进展及应用.食品与发酵工业, 2016, 42(5):259-263.Wu CD, Huang J, Zhou RQ. Recent advance and application of metaproteomics. Food and Fermentation Industries, 2016, 42(5):259-263.(in Chinese)
    [24] Maron PA, Ranjard L, Mougel C, Lemanceau P. Metaproteomics:a new approach for studying functional microbial ecology. Microbial Ecology, 2007, 53(3):486-493.
    [25] 龙娟,杨晓红,于桂宝.微生物蛋白组学的发展及前景.生物技术通报, 2006(S1):91-94, 99.Long J, Yang XH, Yu GB. Development and prospect of microbial proteomics. Biotechnology Bulletin, 2006(S1):91-94, 99.(in Chinese)
    [26] 王媛媛.冷藏原料乳品质变化过程中微生物与乳代谢物关系探究.宁夏大学硕士学位论文, 2021.
    [27] Smit G, Smit BA, Engels WJM. Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiology Reviews, 2005, 29(3):591-610.
    [28] Lamendella R, Domingo JWS, Ghosh S, Martinson J, Oerther DB. Comparative fecal metagenomics unveils unique functional capacity of the swine gut. BMC Microbiology, 2011, 11:103.
    [29] Erickson AR, Cantarel BL, Lamendella R, Darzi Y, Mongodin EF, Pan CL, Shah M, Halfvarson J, Tysk C, Henrissat B, Raes J, Verberkmoes NC, Fraser CM, Hettich RL, Jansson JK. Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn՚s disease. PLoS One, 2012, 7(11):e49138.
    [30] Geethanjali, Dinesh Kumar V, Raghu N, Gopenath TS, Veerana Gowda S, Ong KW, Ranjith MS, Gnanasekaran A, Karthikeyan M, Roy B, Pugazhandhi B, Pradeep P, Balasubramanian S, Basalingappa KM. Quorum sensing:a molecular cell communication in bacterial cells. Journal of Biomedical Sciences, 2019, 5(2):23-34.
    [31] Oliveira GS, Lopes DRG, Andre C, Silva CC, Baglinière F, Vanetti MCD. Multi species biofilm formation by the contaminating microbiota in raw milk. Biofouling, 2019, 35(8):819-831.
    [32] 蔡方阳,赵懿琛,李义,赵德刚.杜仲ABC转运蛋白基因家族成员鉴定与分析.浙江农业学报, 2021, 33(9):1581-1591.Cai FY, Zhao YC, Li Y, Zhao DG. Identification and analysis of ABC transporters family from Eucommia ulmoides. Acta Agriculturae Zhejiangensis, 2021, 33(9):1581-1591.(in Chinese)
    [33] Chen D, Li XY, Zhao X, Qin YS, Zhang XX, Li J, Wang JM, Wang CF. Proteomics and microstructure profiling of goat milk protein after homogenization. Journal of Dairy Science, 2019, 102(5):3839-3850.
    [34] Capra EJ, Laub MT. Evolution of two-component signal transduction systems. Annual Review of Microbiology, 2012, 66:325-347.
    [35] Issa IN, Philippe D, Nicholas A, Raoult D, Eric C. Metaproteomics of the human gut microbiota:challenges and contributions to other OMICS. Clinical Mass Spectrometry, 2019, 14:18-30.
    [36] Okeke ES, Ita RE, Egong EJ, Udofia LE, Mgbechidinma CL, Akan OD. Metaproteomics insights into fermented fish and vegetable products and associated microbes. Food Chemistry:Molecular Sciences, 2021, 3:100045.
    [37] Xie MX, Wu JR, An FY, Yue XQ, Tao DB, Wu RN, Lee YK. An integrated metagenomic/metaproteomic investigation of microbiota in dajiang-meju, a traditional fermented soybean product in Northeast China. Food Research International, 2019, 115:414-424.
    [38] Starke R, Jehmlich N, Bastida F. Using proteins to study how microbes contribute to soil ecosystem services:the current state and future perspectives of soil metaproteomics. Journal of Proteomics, 2019, 198:50-58.
    [39] Xie ZX, He YB, Wang MH, Zhang SF, Kong LF, Lin L, Liu SQ, Wang DZ. Dissecting microbial community structure and metabolic activities at an oceanic deep chlorophyll maximum layer by size-fractionated metaproteomics. Progress in Oceanography, 2020, 188:102439.
    [40] Tang J, Fu JB, Wang YX, Li B, Li YH, Yang QX, Cui XJ, Hong JJ, Li XF, Chen YZ, Xue WW, Zhu F. ANPELA:analysis and performance assessment of the label-free quantification workflow for metaproteomic studies. Briefings in Bioinformatics, 2020, 21(2):621-636.
    [41] Heyer R, Schallert K, Zoun R, Becher B, Saake G, Benndorf D. Challenges and perspectives of metaproteomic data analysis. Journal of Biotechnology, 2017, 261:24-36.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

卞永霞,剧柠,郭蓉,苟萌,王媛媛. 原料乳冷藏过程中微生物细胞的宏蛋白组学分析[J]. 微生物学报, 2022, 62(7): 2782-2795

复制
分享
文章指标
  • 点击次数:241
  • 下载次数: 906
  • HTML阅读次数: 608
  • 引用次数: 0
历史
  • 收稿日期:2021-11-17
  • 最后修改日期:2022-04-07
  • 在线发布日期: 2022-07-06
  • 出版日期: 2022-07-04
文章二维码