不同种苏铁珊瑚状根内生微生物多样性及适应性研究
作者:
基金项目:

国家自然科学基金(31860208,31560207);国家重点研发计划(2019YFD100200X);西南林业大学木棉纤维人工林产业化培育省级创新团队项目(2018HC014);云南省教育厅科学研究基金(2021Y274)


Diversity and adaptability of endophytic microorganisms in coralloid roots of different species of Cycas
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】苏铁(Cycassp.)是珍稀濒危树种,能在干热河谷中长期稳定生存的原因可能与珊瑚状根内生微生物有密切关系。不同种苏铁在同一生境下其珊瑚状根内生微生物种类和群落组成存在怎样的差异性是本研究的科学问题。【方法】采用宏基因测序技术对四川省攀枝花公园内5种同属不同种苏铁珊瑚状根进行了分子鉴定,分析了苏铁间微生物类型、功能基因和代谢通路过程的差异性。【结果】公园内不同苏铁的珊瑚状根内生微生物的优势类群在门水平上基本相同,但相对丰度有差异性。在真菌界水平上的优势类群为担子菌门(Basidiomycota)、子囊菌门(Ascomycota)、球囊菌门(Glomeromycota)和隐真菌门(Cryptomycota),在细菌界水平上的优势类群为蓝细菌门(Cyanobacteria)、变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)、螺旋体门(Spirochaetes)和放线菌门(Actinobacteria)。不同种的苏铁在真菌界和细菌界的微生物群落相对丰度存在一定差异。蓝细菌门在篦齿苏铁、攀枝花苏铁、华南苏铁和贵州苏铁中的相对丰度远高于宽叶苏铁,而放线菌门和球囊菌门在宽叶苏铁的相对丰度远高于篦齿苏铁、攀枝花苏铁、华南苏铁和贵州苏铁。通过KEGG数据库比对分析发现不同种苏铁间微生物的差异表达基因功能主要与环境适应和能量代谢通路相关。结果表明碳水化合物代谢(carbohydrate metabolism)、氨基酸代谢(amino acid metabolism)、基因结构的折叠、排列和降解(folding、sorting、degradation)及信号转导(signal transduction)的功能基因较为丰富。【结论】种植于同一地点的不同苏铁的珊瑚状根内生微生物的优势类群在门水平上基本相同,但相对丰度有差异性。珊瑚状根内的蓝细菌和放线菌参与的氮素和碳水化合物合成和代谢过程可能是苏铁适应干热河谷贫瘠环境的重要因素之一。

    Abstract:

    [Objective] Cycas sp. is a rare and endangered tree species and can live stably in dry and hot valleys for a long time, which is closely related to the microorganisms in coralloid roots. The paper explored the differences in the species and community composition of endophytic microorganisms in coralloid roots of different species of Cycas under the same habitat. [Methods] Five Cycas coralloid roots of the same genus and different species in the Panzhihua park in Sichuan Province were molecularly identified by metagenomic sequencing technology, and the differences in microbial types, functional genes and metabolic pathways among Cycas plants were analyzed.[Results] The dominant groups of endophytic microorganisms in the samples were basically the same at the phylum level but with different relative abundance. Basidiomycota, Ascomycota, Glomeromycota and Cryptomycota were the dominant groups in the fungal kingdom, and in the bacterial kingdom Cyanobacteria, Proteobacteria, Firmicutes, Spirochaetes and Actinobacteria were dominant. There were some differences in the relative abundance of microbial communities of different species of Cycas in the fungal and the bacterial kingdoms. The relative abundance of Cyanobacteria in Cycas pectinate, C.panzhihuaensis, C.rumphii and C.guizhouens was much higher than that in C.balansae, while the relative abundance of Actinomycetes and Glomeromycota in C.balansae were much higher than that in C.pectinate, C.panzhihuaensis, C.rumphii and C.guizhouens. Through KEGG analysis, it was found that the differentially expressed gene functions of microorganisms among different species of Cycas were mainly related to environmental adaptation and energy metabolism pathways. There were abundant functional genes in carbohydrate metabolism, amino acid metabolism, folding, sorting, and degradation and signal transduction. [Conclusion] The dominant groups of endophytic microorganisms in the coralloid roots of different species of Cycas planted in the same place were basically the same at the phylum level, but the relative abundance were different. Cyanobacteria and Actinomycetes in the coralloid roots participated in the synthesis and metabolism of nitrogen and carbohydrates, which may be an important factor for Cycas to adapt to the barren environment of dry and hot valleys.

    参考文献
    [1] Osborne R, Calonje MA, Hill KD, Stanberg L, Stevenson DW. The World list of cycads proceedings of Cycad 2008:the 8th International Conference on Cycad Biology. The New York Botanical Garden Press, 2012, 106:480-510.
    [2] 傅瑞树.苏铁(Cycas revoluta)研究的现状及展望.武夷科学, 2000, 16(0):187-190.Fu RS. Current research status and outlook of Cycas revolula. Wuyi Science Journal, 2000, 16(0):187-190.(in Chinese)
    [3] Bailey PHJ, Currey JD, Fitter AH. The role of root system architecture and root hairs in promoting anchorage against uprooting forces in Allium cepa and root mutants of Arabidopsis thaliana. Journal of Experimental Botany, 2002, 53(367):333-340.
    [4] Jin T, Wang YY, Huang YY, Xu J, Zhang PF, Wang N, Liu X, Chu HY, Liu G, Jiang HG, Li YZ, Xu J, Kristiansen K, Xiao L, Zhang YZ, Zhang GY, Du GH, Zhang HB, Zou HF, Zhang HF, Jie ZY, Liang SS, Jia HJ, Wan JW, Lin DC, Li JY, Fan GY, Yang HM, Wang J, Bai Y, Xu X. Erratum to:taxonomic structure and functional association of foxtail millet root microbiome. GigaScience, 2018, 7(11):giy099.
    [5] Zheng Y, Chiang TY, Huang CL, Gong X. Highly diverse endophytes in roots of Cycas bifida(Cycadaceae), an ancient but endangered gymnosperm. Journal of Microbiology:Seoul, Korea, 2018, 56(5):337-345.
    [6] Baulina OI, Lobakova ES. Atypical cell forms overproducing extracellular substances in population of cycad cyanobionts. Mikrobiologiia, 2003, 72(6):792-805.
    [7] Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. Molecular biological access to the chemistry of unknown soil microbes:a new frontier for natural products. Chemistry& Biology, 1998, 5(10):R245-R249.
    [8] 张冰,崔岱宗,赵敏,张冰.宏基因组学技术及其在微生物学研究中的应用.黑龙江医药, 2014, 27(2):267-271.Zhang B, Cui DZ, Zhao M, Zhang B. Application of metagenomics for understanding of environmental microbiology. Heilongjiang Medicine Journal, 2014, 27(2):267-271.(in Chinese)
    [9] 谢翠苹,张海燕,马书云,李棠,梁丽,李娟.攀枝花市园林植物蚧壳虫初步调查及防治对策.四川林业科技, 2020, 41(2):140-143.Xie CP, Zhang HY, Ma SY, Li T, Liang L, Li J. Preliminary investigation and control countermeasures of scale insects on garden plants in Panzhihua City. Journal of Sichuan Forestry Science and Technology, 2020, 41(2):140-143.(in Chinese)
    [10] Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE. Inside the root microbiome:bacterial root endophytes and plant growth promotion. American Journal of Botany, 2013, 100(9):1738-1750.
    [11] Chapelle E, Mendes R, Bakker PAH, Raaijmakers JM. Fungal invasion of the rhizosphere microbiome. The ISME Journal, 2016, 10(1):265-268.
    [12] 罗红丽,林显钊,张利敏,刘宁,黄英.百部内生放线菌的分离、分类及次级代谢潜力.微生物学报, 2012, 52(3):389-395.Luo HL, Lin XZ, Zhang LM, Liu N, Huang Y. Isolation, classification and biosynthetic potential of endophytic actinomycetes from Stemona. Acta Microbiologica Sinica, 2012, 52(3):389-395.(in Chinese)
    [13] 郑立昊,王兰梦,郎多勇,崔高畅,张新慧.植物内生放线菌的多样性及其应用价值研究进展.时珍国医国药, 2021, 32(1):166-169.Zheng LH, Wang LM, Lang DY, Cui GC, Zhang XH. Research progress on diversity and application value of plant endophytic actinomycetes. Lishizhen Medicine and Materia Medica Research, 2021, 32(1):166-169.(in Chinese)
    [14] 王国娟,曹妍,王芳,马焕成,郑艳玲,伍建榕.应用16S rDNA克隆文库解析苏铁珊瑚状根内生放线菌种群多样性.中南林业科技大学学报, 2016, 36(8):115-120.Wang GJ, Cao Y, Wang F, Ma HC爬甠捚瑨略牮敧?慙湌搬?晗畵渠捊瑒椮漠湁?潰晬?灣污慴湩瑯?挠敯汦氠?眶慓氠汲獄???楣?乯慮瑥甠牬敩??桡敲浹椠捡慮污??楳潩汳漠杦祯??椼????っ?び????ㄠび???㈠???????扩牤?孲??嵴??敥湮杤?坰???楩湣搠湡散牴????剹潣扥扴楥湳猠?乯????楴湩湯敮渠祤??剥???牴潹眮椠渼杩 ̄潊畯瑵?潮晡?猠瑯牦攠獃獥?瑴桲敡?爠潓汯敵?潨映?据敩汶汥?慳湩摴?漠牯杦愠湆?獲捥慳汴敲?朦牡潭睰琻栠?捥潣湨瑮牯潬汯?楹渼?灩氾愬渠琲‰眱愶琬攠爳?猨琸爩攺猱猱‵爭攱猲瀰漮渨獩敮猠???楮?味桥攩?偢汲愾湛琱‵?攠汨沖??楎???企ぎ??????????ㄧ??????????拪父?学??崠′?氰愸爬稠礳渰猨歓椱?伺?‰倳氭攴猰猵攬?????潙畡扮敧爠瑙?????奮瘠楈湈??????潈瀮瀠?????汤潹愠牯敮朠?????牳楩瑴楹朠?????楤湯数慨特?扩散琠慡?????杭汹畣捴慥湳献?愼物放?敯汵楲据楡瑬漠牯獦?潙晵?摮敡普攠湕獮敩?牥敲獳灩潴湹猼支獩 ̄椺渼?琾潎扡慴捵捲潡???楣?健汮慣湥瑳?偅桤祩獴楩潯汮漼术祩??椠??‰劳??????㈱???????日??ㄠ????(in Chinese)
    [16] Bergman B, Matveyev A, Rasmussen U. Chemical signalling in cyanobacterial-plant symbioses. Trends in Plant Science, 1996, 1(6):191-197.
    [17] 陈彬,郑斯平,郑伟文.苏铁与蓝细菌的共生.武夷科学, 2007, 23:202-209.Chen B, Zheng SP, Zheng WW. Cyanobacteria-cycads symbioses. Wuyi Science Journal, 2007, 23:202-209.(in Chinese)
    [18] 刘雨晴.水稻内生放线菌OsiSh-10对植物生长的影响及机理的初探.湖南大学硕士学位论文, 2017.
    [19] Fitter AH, Garbaye J. Interactions between mycorrhizal fungi and other soil organisms. Plant and Soil, 1994, 159(1):123-132.
    [20] Cornejo P, Rubio R, Borie F. Effect of nitrogen source on some rhizospheric properties and persistence of my corrhizal fungal propagules in an andisol. Chilean Journal of Agricultural Research, 2008, 68(2):119-127.
    [21] Jamet E, Albenne C, Boudart G, Irshad M, Canut H, Pont-Lezica R. Recent advances in plant cell wall proteomics. Proteomics, 2008, 8(4):893-908.
    [22] Yu ZM, He CM, Teixeira Da Silva JA, Zhang GH, Dong W, Luo JP, Duan J. Molecular cloning and functional analysis of DoUGE related to water-soluble polysaccharides from Dendrobium officinale with enhanced abiotic stress tolerance. Plant Cell, Tissue and Organ Culture:PCTOC, 2017, 131(3):579-599.
    [23] 石永春,杨永银,薛瑞丽,刘巧真.植物中抗坏血酸的生物学功能研究进展.植物生理学报, 2015, 51(1):1-8.Shi YC, Yang YY, Xue RL, Liu QZ. Research advance of biological function of ascorbic acid in plants. Plant Physiology Journal, 2015, 51(1):1-8.(in Chinese)
    [24] Burton RA, Gidley MJ, Fincher GB. Heterogeneity in the chemistry, st
    引证文献
引用本文

魏玉倩,陈健鑫,郑艳玲,竺永金,周嫒婷,马焕成,伍建榕. 不同种苏铁珊瑚状根内生微生物多样性及适应性研究[J]. 微生物学报, 2022, 62(7): 2835-2849

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-12-09
  • 最后修改日期:2022-03-10
  • 在线发布日期: 2022-07-06
  • 出版日期: 2022-07-04
文章二维码