真菌中锌簇蛋白的结构和功能
作者:
基金项目:

国家自然科学基金(31500045);高水平农科院建设-科技创新战略专项(R2021YJ-YB1004,R2020PY-JX019);农业农村部华南现代生物种业重点实验室(2105-000000-20-03-457451)


Structures and functions of zinc cluster proteins in fungi
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [59]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    锌簇家族蛋白即Zn2Cys6类锌指蛋白,是真菌中特有的一类蛋白,它们属于转录因子类,广泛参与真菌中初级和次级代谢、胁迫应答和细胞分裂等生命活动的调控。锌簇蛋白主要包括N端的DNA结合结构域、中间的调节结构域和C端的酸性区域,其中DNA结合结构域包含锌指基序并负责结合靶基因的启动子。目前已经解析了多个锌簇家族转录因子DNA结合结构域的三维结构,并发现该家族中一些蛋白能够参与调控多个基因的表达,但缺乏对其结构、动力学和功能关系的全面分析。本文综合分析了不同锌簇蛋白与DNA结合的结构特征,总结其结构域与功能的关系,指出锌簇蛋白研究的重要方向,旨在为锌簇家族蛋白的深入研究提供思路。

    Abstract:

    Zinc cluster proteins, or Zn2Cys6 binuclear cluster proteins, are a family of transcription factors unique to the fungal kingdom. They are involved in diverse cellular processes of fungi, such as primary and secondary metabolism, stress response, and cell division. Zinc cluster proteins contain the DNA binding domain at the N-terminus, the regulatory domain in the middle, and the acidic activating domain at the C-terminus. The DNA binding domain, comprising a zinc finger motif, is responsible for binding to promoters of the target genes. At the moment, the three-dimensional structures of the DNA binding domains of some zinc cluster transcription factors have been resolved, and some proteins in this family have been verified to regulate the expression of multiple genes. However, no comprehensive report on the structures, dynamics and functions of them is available. Therefore, we analyzed the structural characteristics of different zinc cluster proteins, summarized the relationship between the domains and functions, and pointed out the future research focuses, hoping to provide a reference for in-depth research on zinc cluster proteins in the future.

    参考文献
    [1] Padjasek M, Kocyła A, Kluska K, Kerber O, Tran JB, Krężel A. Structural zinc binding sites shaped for greater works:structure-function relations in classical zinc finger, hook and clasp domains. Journal of Inorganic Biochemistry, 2020, 204:110955.
    [2] Rakhra G, Rakhra G. Zinc finger proteins:insights into the transcriptional and post transcriptional regulation of immune response. Molecular Biology Reports, 2021, 48(7):5735-5743.
    [3] Wang YS, Yu Y, Pang YD, Yu HJ, Zhang WQ, Zhao X, Yu JX. The distinct roles of zinc finger CCHC-type (ZCCHC) superfamily proteins in the regulation of RNA metabolism. RNA Biology, 2021, 18(12):2107-2126.
    [4] 梁甜甜,王亦婧,程晓婕,曾斌,贺斌. Zn (Ⅱ)2Cys6锌指转录因子的结构和功能研究进展.江西科技师范大学学报, 2019(6):96-98. Liang TT, Wang YJ, Cheng XJ, Zeng B, He B. Research progress on the structure and function of Zn (Ⅱ)2Cys6 zinc finger transcription factor. Journal of Jiangxi Science& Technology Normal University, 2019(6):96-98.(in Chinese)
    [5] Li YH, Liu TB. Zinc finger proteins in the human fungal pathogen Cryptococcus neoformans. International Journal of Molecular Sciences, 2020, 21(4):1361.
    [6] MacPherson S, Larochelle M, Turcotte B. A fungal family of transcriptional regulators:the zinc cluster proteins. Microbiology and Molecular Biology Reviews:MMBR, 2006, 70(3):583-604.
    [7] Leon O, Roth M. Zinc fingers:DNA binding and protein-protein interactions. Biological Research, 2000, 33(1):21-30.
    [8] Campbell RN, Leverentz MK, Ryan LA, Reece RJ. Metabolic control of transcription:paradigms and lessons from Saccharomyces cerevisiae. The Biochemical Journal, 2008, 414(2):177-187.
    [9] Todd RB, Andrianopoulos A. Evolution of a fungal regulatory gene family:the Zn (Ⅱ)2Cys6 binuclear cluster DNA binding motif. Fungal Genetics and Biology, 1997, 21(3):388-405.
    [10] Zhang CH, Huang H, Deng WQ, Li TH. Genome-wide analysis of the Zn (Ⅱ)2Cys6 zinc cluster-encoding gene family in Tolypocladium guangdongense and its light-induced expression. Genes, 2019, 10(3):179.
    [11] Hou ZH, Chen Q, Zhao MR, Huang CY, Wu XL. Genome-wide characterization of the Zn (Ⅱ)2Cys6 zinc cluster-encoding gene family in Pleurotus ostreatus and expression analyses of this family during developmental stages and under heat stress. PeerJ, 2020, 8:e9336.
    [12] Kartal B, Akçay A, Palabiyik B. Oxidative stress upregulates the transcription of genes involved in thiamine metabolism. Turkish Journal of Biology, 2018, 42(5):447-452.
    [13] Börlin CS, Nielsen J, Siewers V. The transcription factor Leu3 shows differential binding behavior in response to changing leucine availability. FEMS Microbiology Letters, 2020, 367(13):fnaa107.
    [14] Nishimura A, Yoshikawa Y, Ichikawa K, Takemoto T, Tanahashi R, Takagi H. Longevity regulation by proline oxidation in yeast. Microorganisms, 2021, 9(8):1650.
    [15] Venkatesh A, Murray AL, Coughlan AY, Wolfe KH. Giant GAL gene clusters for the melibiose-galactose pathway in Torulaspora. Yeast, 2021, 38(1):117-126.
    [16] Buechel ER, Pinkett HW. Transcription factors and ABC transporters:from pleiotropic drug resistance to cellular signaling in yeast. FEBS Letters, 2020, 594(23):3943-3964.
    [17] Liao LS, Li CX, Zhang FF, Yan YS, Luo XM, Zhao S, Feng JX. How an essential Zn2Cys6 transcription factor PoxCxrA regulates cellulase gene expression in ascomycete fungi?Biotechnology for Biofuels, 2019, 12:105.
    [18] Beaudoin J, Ioannoni R, Mailloux S, Plante S, Labbé S. Transcriptional regulation of the copper transporter mfc1 in meiotic cells. Eukaryotic Cell, 2013, 12(4):575-590.
    [19] Schüller C, Mamnun YM, Wolfger H, Rockwell N, Thorner J, Kuchler K. Membrane-active compounds activate the transcription factors Pdr1 and Pdr3 connecting pleiotropic drug resistance and membrane lipid homeostasis in Saccharomyces cerevisiae. Molecular Biology of the Cell, 2007, 18(12):4932-4944.
    [20] Traven A, Jelicic B, Sopta M. Yeast Gal4:a transcriptional paradigm revisited. EMBO Reports, 2006, 7(5):496-499.
    [21] Caceres I, Khoury AA, Khoury RE, Lorber S, Oswald IP, Khoury AE, Atoui A, Puel O, Bailly JD. Aflatoxin biosynthesis and genetic regulation:a review. Toxins, 2020, 12(3):150.
    [22] Khan R, Ghazali FM, Mahyudin NA, Samsudin NIP. Aflatoxin biosynthesis, genetic regulation, toxicity, and control strategies:a review. Journal of Fungi:Basel, Switzerland, 2021, 7(8):606.
    [23] Beaudoin J, Ioannoni R, Normant V, Labbé S. A role for the transcription factor Mca1 in activating the meiosis-specific copper transporter Mfc1. PLoS One, 2018, 13(8):e0201861.
    [24] Marmorstein R, Carey M, Ptashne M, Harrison SC. DNA recognition by GAL4:structure of a protein-DNA complex. Nature, 1992, 356(6368):408-414.
    [25] Marmorstein R, Harrison SC. Crystal structure of a PPR1-DNA complex:DNA recognition by proteins containing a Zn2Cys6 binuclear cluster. Genes& Development, 1994, 8(20):2504-2512.
    [26] Swaminathan K, Flynn P, Reece RJ, Marmorstein R. Crystal structure of a PUT3-DNA complex reveals a novel mechanism for DMA recognition by a protein containing a Zn2Cys6 binuclear cluster. Nature Structural Biology, 1997, 4(9):751-759.
    [27] King DA, Zhang L, Guarente L, Marmorstein R. Structure of a HAP1-DNA complex reveals dramatically asymmetric DNA binding by a homodimeric protein. Nature Structural Biology, 1999, 6(1):64-71.
    [28] Cerdan R, Cahuzac B, Félenbok B, Guittet E. NMR solution structure of AlcR (1-60) provides insight in the unusual DNA binding properties of this zinc binuclear cluster protein. Journal of Molecular Biology, 2000, 295(4):729-736.
    [29] Cahuzac B, Cerdan R, Felenbok B, Guittet E. The solution structure of an AlcR-DNA complex sheds light onto the unique tight and monomeric DNA binding of a Zn (2) Cys (6) protein. Structure:London, England:1993, 2001, 9(9):827-836.
    [30] Hong MQ, Fitzgerald MX, Harper S, Luo C, Speicher DW, Marmorstein R. Structural basis for dimerization in DNA recognition by Gal4. Structure, 2008, 16(7):1019-1026.
    [31] Garg A, Goldgur Y, Schwer B, Shuman S. Distinctive structural basis for DNA recognition by the fission yeast Zn2Cys6 transcription factor Pho7 and its role in phosphate homeostasis. Nucleic Acids Research, 2018, 46(21):11262-11273.
    [32] Garg A, Goldgur Y, Sanchez AM, Schwer B, Shuman S. Structure of fission yeast transcription factor Pho7 bound to pho1 promoter DNA and effect of Pho7 mutations on DNA binding and phosphate homeostasis. Molecular and Cellular Biology, 2019, 39(13):e00132-e00119.
    [33] Baumgartner U, Hamilton B, Piskacek M, Ruis H, Rottensteiner H. Functional analysis of the Zn2Cys6 transcription factors Oaf1p and Pip2p:different roles in fatty acid induction of β-oxidation in Saccharomyces cerevisiae. Journal of Biological Chemistry, 1999, 274(32):22208-22216.
    [34] Mamnun YM, Pandjaitan R, Mahé Y, Delahodde A, Kuchler K. The yeast zinc finger regulators Pdr1p and Pdr3p control pleiotropic drug resistance (PDR) as homo-and heterodimers in vivo. Molecular Microbiology, 2002, 46(5):1429-1440.
    [35] Fitzgerald MX, Rojas JR, Kim JM, Kohlhaw GB, Marmorstein R. Structure of a Leu3-DNA complex:recognition of everted CGG half-sites by a Zn2Cys6 binuclear cluster protein. Structure, 2006, 14(4):725-735.
    [36] Ribeiro J, Melo F, Schüller A. PDIviz:analysis and visualization of protein-DNA binding interfaces. Bioinformatics, 2015, 31(16):2751-2753.
    [37] Noël J, Turcotte B. Zinc cluster proteins Leu3p and Uga3p recognize highly related but distinct DNA targets. The Journal of Biological Chemistry, 1998, 273(28):17463-17468.
    [38] Campitelli P, Modi T, Kumar S, Ozkan SB. The role of conformational dynamics and allostery in modulating protein evolution. Annual Review of Biophysics, 2020, 49:267-288.
    [39] Kharche SA, Sengupta D. Dynamic protein interfaces and conformational landscapes of membrane protein complexes. Current Opinion in Structural Biology, 2020, 61:191-197.
    [40] Salladini E, Jørgensen MLM, Theisen FF, Skriver K. Intrinsic disorder in plant transcription factor systems:functional implications. International Journal of Molecular Sciences, 2020, 21(24):9755.
    [41] Wu SW, Wang DD, Liu J, Feng YT, Weng JW, Li Y, Gao X, Liu JW, Wang WN. The dynamic multisite interactions between two intrinsically disordered proteins. Angewandte Chemie International Edition, 2017, 56(26):7515-7519.
    [42] Feng YT, Zhang L, Wu SW, Liu ZJ, Gao X, Zhang X, Liu ML, Liu JW, Huang XH, Wang WN. Conformational dynamics of apo-GlnBP revealed by experimental and computational analysis. Angewandte Chemie International Edition, 2016, 55(45):13990-13994.
    [43] Zhang L, Wu S, Feng Y, Wang D, Jia X, Liu Z, Liu J, Wang W. Ligand-bound glutamine binding protein assumes multiple metastable binding sites with different binding affinities. Communications Biology, 2020, 3:419.
    [44] Hidalgo P, Ansari AZ, Schmidt P, Hare B, Simkovich N, Farrell S, Shin EJ, Ptashne M, Wagner G. Recruitment of the transcriptional machinery through GAL11P:structure and interactions of the GAL4 dimerization domain. Genes& Development, 2001, 15(8):1007-1020.
    [45] Schjerling P, Holmberg S. Comparative amino acid sequence analysis of the C6 zinc cluster family of transcriptional regulators. Nucleic Acids Research, 1996, 24(23):4599-4607.
    [46] Martínez JL, Liu LF, Petranovic D, Nielsen J. Engineering the oxygen sensing regulation results in an enhanced recombinant human hemoglobin production by Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2015, 112(1):181-188.
    [47] Friden P, Reynolds C, Schimmel P. A large internal deletion converts yeast LEU3 to a constitutive transcriptional activator. Molecular and Cellular Biology, 1989, 9(9):4056-4060.
    [48] Zhou KM, Kohlhaw GB. Transcriptional activator LEU3 of yeast. Mapping of the transcriptional activation function and significance of activation domain tryptophans. The Journal of Biological Chemistry, 1990, 265(29):17409-17412.
    [49] Bovier E, Sellem CH, Humbert A, Sainsard-Chanet A. Genetic and functional investigation of Zn (2) Cys (6) transcription factors RSE2 and RSE3 in Podospora anserina. Eukaryotic Cell, 2014, 13(1):53-65.
    [50] Delaveau T, Delahodde A, Carvajal E, Subik J, Jacq C. PDR3, a new yeast regulatory gene, is homologous to PDR1 and controls the multidrug resistance phenomenon. Molecular& General Genetics:MGG, 1994, 244(5):501-511.
    [51] Kolaczkowska A, Goffeau A. Regulation of pleiotropic drug resistance in yeast. Drug Resistance Updates, 1999, 2(6):403-414.
    [52] Nishi H, Shaytan A, Panchenko AR. Physicochemical mechanisms of protein regulation by phosphorylation. Frontiers in Genetics, 2014, 5:270.
    [53] Sadowski I, Costa C, Dhanawansa R. Phosphorylation of Ga14p at a single C-terminal residue is necessary for galactose-inducible transcription. Molecular and Cellular Biology, 1996, 16(9):4879-4887.
    [54] Rohde JR, Trinh J, Sadowski I. Multiple signals regulate GAL transcription in yeast. Molecular and Cellular Biology, 2000, 20(11):3880-3886.
    [55] Huang HL, Brandriss MC. The regulator of the yeast proline utilization pathway is differentially phosphorylated in response to the quality of the nitrogen source. Molecular and Cellular Biology, 2000, 20(3):892-899.
    [56] Kren A, Mamnun YM, Bauer BE, Schüller C, Wolfger H, Hatzixanthis K, Mollapour M, Gregori C, Piper P, Kuchler K. War1p, a novel transcription factor controlling weak acid stress response in yeast. Molecular and Cellular Biology, 2003, 23(5):1775-1785.
    [57] Randez-Gil F, Bojunga N, Proft M, Entian KD. Glucose derepression of gluconeogenic enzymes in Saccharomyces cerevisiae correlates with phosphorylation of the gene activator Cat8p. Molecular and Cellular Biology, 1997, 17(5):2502-2510.
    [58] Charbon G, Breunig KD, Wattiez R, Vandenhaute J, Noël-Georis I. Key role of Ser562/661 in Snf1-dependent regulation of Cat8p in Saccharomyces cerevisiae and Kluyveromyces lactis. Molecular and Cellular Biology, 2004, 24(10):4083-4091.
    [59] Reece RJ, Ptashne M. Determinants of binding-site specificity among yeast C6 zinc cluster proteins. Science, 1993, 261(5123):909-911.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴绍文,孔谦,黄文洁,晏石娟. 真菌中锌簇蛋白的结构和功能[J]. 微生物学报, 2022, 62(8): 2916-2926

复制
分享
文章指标
  • 点击次数:906
  • 下载次数: 1362
  • HTML阅读次数: 1491
  • 引用次数: 0
历史
  • 收稿日期:2021-12-07
  • 最后修改日期:2022-03-04
  • 在线发布日期: 2022-08-16
文章二维码