结合三代测序与二代测序技术揭示蜜蜂球囊菌孢子转录组的复杂性
作者:
基金项目:

国家自然科学基金(31702190);财政部和农业农村部:国家现代农业产业技术体系(CARS-44-KXJ7);福建农林大学硕士生导师团队项目(郭睿);江西省蜜蜂生物学与饲养重点实验室开放基金(JXKLHBB-2020-04);福建省病原真菌与真菌毒素重点实验室开放课题(郭睿)


Unraveling the complexity of transcriptome in Ascosphaera apis spore: based on third-generation and next-generation sequencing
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [46]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    【目的】蜜蜂球囊菌(Ascosphaera apis)是一种专性侵染蜜蜂幼虫的致死性真菌病原。本研究旨在利用PacBio单分子实时(single molecule real-time,SMRT)测序技术对蜜蜂球囊菌孢子(AaS)中基因的可变剪切(alternative splicing,AS)和可变多聚腺苷酸化(alternative polyadenylation,APA)以及长链非编码RNA (long non-coding RNA,lncRNA)进行鉴定和分析,进而揭示蜜蜂球囊菌孢子中转录组的复杂性。【方法】采用Suppa软件对蜜蜂球囊菌孢子中基因的AS事件进行鉴定。通过RT-PCR对不同类型的AS事件进行验证。采用TAPIS pipeline对蜜蜂球囊菌孢子基因的APA位点进行鉴定。利用MEME软件分析孢子全长转录本的poly (A)剪接位点上游50 bp的序列特征并鉴定motif。联用CPC和CNCI软件和比对Swiss-prot数据库的方法预测lncRNA,取三者的交集作为高可信度的lncRNA集合。进一步比较lncRNA和mRNA的转录本长度,外显子数量与长度,内含子长度,GC含量,AS事件数量。【结果】在蜜蜂球囊菌孢子中共鉴定到2 609次AS事件,包括1 227次(47.03%)内含子保留(retained intron,RI),842次(32.27%)可变3ʹ剪切(alternative 3ʹsplice sites,A3),415次(15.91%)可变5ʹ剪切(alternative 5ʹsplice sites,A5),85次(3.26%)可变起始外显子(alternative first exons,AF),35次(1.34%)外显子跳跃(skipping exon,SE),4次(0.15%)可变末端外显子(alternative last exons,AL)和1次(0.04%)互斥外显子(mutually exclusive exons,MX)。通过RT-PCR证实了不同类型AS事件(RI、A5、SE和A3)的可靠性。共鉴定出5 552个基因含APA位点,其中含有>5个APA位点的基因数量最多,达到2 197个,其次为含有1个APA位点的基因,数量为1 149个;此外,含有2、3、4和5个APA位点的基因数量分别为782、596、477和351个。蜜蜂球囊菌孢子中全长转录本的上下游序列具有明显的碱基倾向性,U和A分别在转录本的下游和上游富集。共鉴定到953条lncRNA。与mRNA相比,上述lncRNA的外显子数量更少且长度更短,内含子长度更短,转录本长度更短,GC含量更低,AS事件数量更少。【结论】本研究全面解析了AaS中的AS、APA和lncRNA,研究结果丰富了蜜蜂球囊菌的基础生物学信息,深入揭示了蜜蜂球囊菌孢子中转录组的复杂性,并为进一步探究不同剪接异构体在病原孢子和病原侵染中的分子功能打下了基础。

    Abstract:

    [Objective] Ascosphaera apis is a lethal fungal pathogen of honey bee larvae. This study aims to identify and analyze alternative splicing (AS) and alternative polyadenylation (APA) of genes and long non-coding RNAs (lncRNAs) in A. apis spore (AaS) by PacBio single molecular real-time (SMRT) sequencing, further unveiling the complexity of AaS's transcriptome. [Methods] AS events of genes in AaS were identified with Suppa, and AS events of various types were confirmed based on RT-PCR. TAPIS pipeline was utilized to explore APA sites of AaS genes. MEME was employed to investigate statistics of sequences at 50 bp upstream of poly(A) splicing sites and identify the motifs. The lncRNAs were predicted based on CPC, CNCI, and Swiss-prot database, and the intersection was regarded as lncRNA dataset. Then the transcript length, exon number and length, intron length, GC content, and AS event number were compared between lncRNAs and mRNAs. [Results] A total of 2 609 AS events were identified in AaS, including 1 227 (47.03%) retained introns (RI), 842 (32.27%) alternative 3ʹ splice sites (A3), 415(15.91%) alternative 5ʹ splice sites (A5), 85 (3.26%) alternative first exons (AF), 35 (1.34%) skipping exons (SE), 4 (0.15%) alternative last exons (AL), and 1 (0.04%) mutually exclusive exon (MX). The reliability of various AS events such as RI, A5, SE, and A3 was validated via RT-PCR. Additionally, 5 552 genes containing APA sites were identified, among which genes with more than 5 APA sites were the most abundant (2 197), followed by genes with 1 APA site (1 149). The numbers of genes with 2, 3, 4, and 5 APA sites were 782, 596, 477, and 351, respectively. Moreover, upstream and downstream sequences of full-length transcripts in AaS had apparent base bias, with U and A respectively enriching at upstream and downstream. In total, 953 lncRNAs were identified, including 247 bidirectional lncRNAs, 171 long intergenic RNAs, 154 anti-sense lncRNAs, 141 sense lncRNAs and 9 intronic lncRNAs. Compared with mRNAs, these lncRNAs had fewer and shorter exons, shorter introns, shorter transcripts, lower GC content and fewer AS events. [Conclusion] In this study, we analyzed the AS, APA, and lncRNA in AaS. The findings enrich the basic biological information of A. apis, unravel the complexity of transcriptome in AaS, and lay a foundation for further exploration of the molecular function of various splicing isoforms in pathogenic spores and during pathogen infection.

    参考文献
    [1] Aronstein KA, Murray KD. Chalkbrood disease in honey bees. Journal of Invertebrate Pathology, 2010, 103:S20-S29.
    [2] Chen DF, Guo R, Xiong CL, Zheng YZ, Hou CS, Fu ZM. Morphological and molecular identification of chalkbrood disease pathogen Ascosphaera apis in Apis cerana cerana. Journal of Apicultural Research, 2018, 57(4):516-521.
    [3] 梁勤,陈大福.蜜蜂保护学. 2版.北京:中国农业出版社, 2009.
    [4] Popham DL, Bernhards CB. Spore peptidoglycan. Microbiology Spectrum, 2015, 3(6). DOI:10.1128/microbiolspec.TBS-0005-2012.
    [5] Li SJ, Tang YW, Fang XM, Qiao TM, Han S, Zhu TH. Whole-genome sequence of Arthrinium phaeospermum, a globally distributed pathogenic fungus. Genomics, 2020, 112(1):919-929.
    [6] Zhang XK, Dai PX, Gao YP, Gong XW, Cui H, Jin YP, Zhang YH. Transcriptome sequencing and analysis of zinc-uptake-related genes in Trichophyton mentagrophytes. BMC Genomics, 2017, 18(1):888.
    [7] He Y, Zhang CH, Deng WQ, Zhou XY, Li TH, Li CH. Transcriptome sequencing analysis of the MSDIN gene family encoding cyclic peptides in lethal Amanita fuligineoides. Toxicon, 2020, 183:61-68.
    [8] Huang Q, Evans JD. Identification of microRNA-like small RNAs from fungal parasite Nosema ceranae. Journal of Invertebrate Pathology, 2016, 133:107-109.
    [9] Guo R, Chen DF, Xiong CL, Hou CS, Zheng YZ, Fu ZM, Liang Q, Diao QY, Zhang L, Wang HQ, Hou ZX, Kumar D. First identification of long non-coding RNAs in fungal parasite Nosema ceranae. Apidologie, 2018, 49(5):660-670.
    [10] Getachew A, Abejew TA, Wu JL, Xu J, Yu HM, Tan J, Wu PJ, Tu YY, Kang WP, Wang Z, Xu SF. Transcriptome profiling reveals insertional mutagenesis suppressed the expression of candidate pathogenicity genes in honeybee fungal pathogen, Ascosphaera apis. Scientific Reports, 2020, 10:7532.
    [11] Cornman RS, Bennett AK, Murray KD, Evans JD, Elsik CG, Aronstein K. Transcriptome analysis of the honey bee fungal pathogen, Ascosphaera apis:implications for host pathogenesis. BMC Genomics, 2012, 13:285.
    [12] 熊翠玲,杜宇,王鸿权,郑燕珍,付中民,王海朋,张璐,陈大福,郭睿.基于比较转录组学分析揭示中华蜜蜂及意大利蜜蜂幼虫的球囊菌抗性差异机制.中国农业大学学报, 2019, 24(5):106-114. Xiong CL, Du Y, Wang HQ, Zheng YZ, Fu ZM, Wang HP, Zhang L, Chen DF, Guo R. Unraveling the mechanism regulating the Ascosphaera apis-resistance difference between Apis cerana cerana and Apis mellifera ligustica larvae based on comparative transcriptome analysis. Journal of China Agricultural University, 2019, 24(5):106-114.(in Chinese)
    [13] 陈华枝,蒋海宾,祝智威,范元婵,许雅静,孙明会,刘佳美,熊翠玲,郑燕珍,付中民,徐国钧,陈大福,郭睿.蜜蜂球囊菌菌丝和孢子中环状RNA的鉴定及比较分析.微生物学报, 2021, 61(5):1299-1314. Chen HZ, Jiang HB, Zhu ZW, Fan YC, Xu YJ, Sun MH, Liu JM, Xiong CL, Zheng YZ, Fu ZM, Xu GJ, Chen DF, Guo R. Identification and comparison of circular RNAs in Ascosphaera apis mycelium and spore. Acta Microbiologica Sinica, 2021, 61(5):1299-1314.(in Chinese)
    [14] 陈华枝,祝智威,蒋海宾,王杰,范元婵,范小雪,万洁琦,卢家轩,熊翠玲,郑燕珍,付中民,陈大福,郭睿.蜜蜂球囊菌菌丝和孢子中微小RNA及其靶mRNA的比较分析.中国农业科学, 2020, 53(17):3606-3619. Chen HZ, Zhu ZW, Jiang HB, Wang J, Fan YC, Fan XX, Wan JQ, Lu JX, Xiong CL, Zheng YZ, Fu ZM, Chen DF, Guo R. Comparative analysis of microRNAs and corresponding target mRNAs in Ascosphaera apis mycelium and spore. Scientia Agricultura Sinica, 2020, 53(17):3606-3619.(in Chinese)
    [15] 陈华枝,王杰,祝智威,蒋海宾,范元婵,范小雪,万洁琦,卢家轩,郑燕珍,付中民,徐国钧,陈大福,郭睿.蜜蜂球囊菌菌丝和孢子中长链非编码RNA的比较及潜在功能分析.中国农业科学, 2021, 54(2):435-448. Chen HZ, Wang J, Zhu ZW, Jiang HB, Fan YC, Fan XX, Wan JQ, Lu JX, Zheng YZ, Fu ZM, Xu GJ, Chen DF, Guo R. Comparison and potential functional analysis of long non-coding RNAs between Ascosphaera apis mycelium and spore. Scientia Agricultura Sinica, 2021, 54(2):435-448.(in Chinese)
    [16] Zhang GQ, Sun M, Wang JF, Lei M, Li CJ, Zhao DJ, Huang J, Li WJ, Li SL, Li J, Yang J, Luo YF, Hu SN, Zhang B. PacBio full-length cDNA sequencing integrated with RNA-seq reads drastically improves the discovery of splicing transcripts in rice. The Plant Journal, 2019, 97(2):296-305.
    [17] Hong F, Mo SH, Lin XY, Niu JZ, Yin J, Wei D. The PacBio full-length transcriptome of the tea aphid as a reference resource. Frontiers in Genetics, 2020, 11:558394.
    [18] Zhang CH, Deng WQ, Yan WJ, Li TH. Whole genome sequence of an edible and potential medicinal fungus, Cordyceps guangdongensis. G3:Bethesda, Md, 2018, 8(6):1863-1870.
    [19] Penouilh-Suzette C, Fourré S, Besnard G, Godiard L, Pecrix Y. A simple method for high molecular-weight genomic DNA extraction suitable for long-read sequencing from spores of an obligate biotroph oomycete. Journal of Microbiological Methods, 2020, 178:106054.
    [20] 杜宇,祝智威,王杰,王秀娜,蒋海宾,范元婵,范小雪,陈华枝,隆琦,蔡宗兵,熊翠玲,郑燕珍,付中民,陈大福,郭睿.利用第三代纳米孔长读段测序技术构建和注释蜜蜂球囊菌的全长转录组.中国农业科学, 2021, 54(4):864-876. Du Y, Zhu ZW, Wang J, Wang XN, Jiang HB, Fan YC, Fan XX, Chen HZ, Long Q, Cai ZB, Xiong CL, Zheng YZ, Fu ZM, Chen DF, Guo R. Construction and annotation of Ascosphaera apis full-length transcriptome utilizing nanopore third-generation long-read sequencing technology. Scientia Agricultura Sinica, 2021, 54(4):864-876.(in Chinese)
    [21] 杜宇,蒋海宾,王杰,范小雪,王秀娜,冯睿蓉,张文德,隆琦,熊翠玲,郑燕珍,陈大福,郭睿.蜜蜂球囊菌菌丝和孢子中全长转录本的差异表达分析.昆虫学报, 2021, 64(3):363-373. Du Y, Jiang HB, Wang J, Fan XX, Wang XN, Feng RR, Zhang WD, Long Q, Xiong CL, Zheng YZ, Chen DF, Guo R. Differential expression analysis of full-length transcripts in mycelia and spores of Ascosphaera apis. Acta Entomologica Sinica, 2021, 64(3):363-373.(in Chinese)
    [22] 杜宇,王杰,蒋海宾,王秀娜,范元婵,范小雪,祝智威,隆琦,张文德,熊翠玲,郑燕珍,付中民,陈大福,郭睿.基于第三代长读段测序数据解析蜜蜂球囊菌基因的可变剪切与可变腺苷酸化.微生物学报, 2021, 61(3):667-682. Du Y, Wang J, Jiang HB, Wang XN, Fan YC, Fan XX, Zhu ZW, Long Q, Zhang WD, Xiong CL, Zheng YZ, Fu ZM, Chen DF, Guo R. Analysis of alternative splicing and polyadenylation of Ascosphaera apis genes based on third-generation long-read sequencing dataset. Acta Microbiologica Sinica, 2021, 61(3):667-682.(in Chinese)
    [23] Chen DF, Du Y, Fan XX, Zhu ZW, Jiang HB, Wang J, Fan YC, Chen HZ, Zhou DD, Xiong CL, Zheng YZ, Xu XJ, Luo Q, Guo R. Reconstruction and functional annotation of Ascosphaera apis full-length transcriptome utilizing PacBio long reads combined with Illumina short reads. Journal of Invertebrate Pathology, 2020, 176:107475.
    [24] Guo R, Chen DF, Xiong CL, Hou CS, Zheng YZ, Fu ZM, Diao QY, Zhang L, Wang HQ, Hou ZX, Li WD, Kumar D, Liang Q. Identification of long non-coding RNAs in the chalkbrood disease pathogen ascospheara Apis.Journal of Invertebrate Pathology, 2018, 156:1-5.
    [25] Li Y, Fang CC, Fu YH, Hu A, Li CC, Zou C, Li XY, Zhao SH, Zhang CJ, Li CC. A survey of transcriptome complexity in Sus scrofa using single-molecule long-read sequencing. DNA Research, 2018, 25(4):421-437.
    [26] Gordon SP, Tseng E, Salamov A, Zhang JW, Meng XD, Zhao ZY, Kang DW, Underwood J, Grigoriev IV, Figueroa M, Schilling JS, Chen F, Wang Z. Widespread polycistronic transcripts in fungi revealed by single-molecule mRNA sequencing. PLoS One, 2015, 10(7):e0132628.
    [27] 蒋海宾,杜宇,范小雪,王杰,祝智威,范元婵,熊翠玲,付中民,徐国钧,陈大福,郭睿.蜜蜂球囊菌菌丝和孢子的比较转录组分析.四川大学学报:自然科学版, 2020, 57(6):1177-1185. Jiang HB, Du Y, Fan XX, Wang J, Zhu ZW, Fan YC, Xiong CL, Fu ZM, Xu GJ, Chen DF, Guo R. Comparative transcriptome analysis of Ascosphaera apis mycelium and spore. Journal of Sichuan University:Natural Science Edition, 2020, 57(6):1177-1185.(in Chinese)
    [28] Alamancos GP, Pagès A, Trincado JL, Bellora N, Eyras E. Leveraging transcript quantification for fast computation of alternative splicing profiles. RNA:New York, N Y , 2015, 21(9):1521-1531.
    [29] Chao YH, Yuan JB, Li SF, Jia SQ, Han LB, Xu LX. Analysis of transcripts and splice isoforms in red clover (Trifolium pratense L.) by single-molecule long-read sequencing. BMC Plant Biology, 2018, 18(1):300.
    [30] Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proceedings International Conference on Intelligent Systems for bidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA. Nature Communications, 2018, 9:5056.
    [48] Wu YQ, Cheng TC, Liu C, Liu DL, Zhang Q, Long RW, Zhao P, Xia QY. Systematic identification and characterization of long non-coding RNAs in the silkworm, Bombyx mori. PLoS One, 2016, 11(1):e0147147.
    [49] Niederer RO, Hass EP, Zappulla DC. Long noncoding RNAs in the yeast S. cerevisiae. Advances in Experimental Medicine and Biology, 2017:119-132.
    [50] Pauli A, Valen E, Lin MF, Garber M, Vastenhouw NL, Levin JZ, Fan L, Sandelin A, Rinn JL, Regev A, Schier AF. Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Research, 2012, 22(3):577-591.
    [51] Guo R, Chen DF, Xiong CL, Hou CS, Zheng YZ, Fu ZM, Liang Q, Diao QY, Zhang L, Wa陮卧朠H荑尬阠H药兵娠Z獘本 祋晵婭a葲洠孄.张敆彩r陳瑴 煩罤獥n遴煩獦i乣乡汴i彯噮鐠o陦夠祬o遮睧 乮敯蝮蜭彣孯孤虩坮噧瘠卒华剁捳匠卩卮脠艦酵卮襧条l茠牰孡扲asite Nosema ceranae. Apidologie, 2018, 49(5):660-670.g HB, Zhang WD, Long Q, Xiong CL, Zheng YZ, Fu ZM, Xu GJ, Chen DF, Guo R. Analysis of alternative splicing and alternative polyadenylation of Nosema ceranae genes. Mycosystema, 2021, 40(1):161-173.(in Chinese)
    [36] Burkhardt A, Buchanan A, Cumbie JS, Savory EA, Chang JH, Day B. Alternative splicing in the obligate biotrophic oomycete pathogen Pseudoperonospora cubensis. Molecular Plant-Microbe Interactions:MPMI, 2015, 28(3):298-309.
    [37] Jin LR, Li GL, Yu DZ, Huang W, Cheng C, Liao SJ, Wu QJ, Zhang Y. Transcriptome analysis reveals the complexity of alternative splicing regulation in the fungus Verticillium dahliae. BMC Genomics, 2017, 18(1):130.
    [38] Elkon R, Ugalde AP, Agami R. Alternative cleavage and polyadenylation:extent, regulation and function. Nature Reviews Genetics, 2013, 14(7):496-506.
    [39] Smibert P, Miura P, Westholm JO, Shenker S, May G, Duff MO, Zhang DY, Eads BD, Carlson J, Brown JB, Eisman RC, Andrews J, Kaufman T, Cherbas P, Celniker SE, Graveley BR, Lai EC. Global patterns of tissue-specific alternative polyadenylation in Drosophila. Cell Reports, 2012, 1(3):277-289.
    [40] Kasowitz SD, Ma J, Anderson SJ, Leu NA, Xu Y, Gregory BD, Schultz RM, Wang PJ. Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genetics, 2018, 14(5):e1007412.
    [41] Jafar Z, Tariq S, Sadiq I, Nawaz T, Akhtar MN. Genome-wide profiling of polyadenylation events in maize using high-throughput transcriptomic sequences. G3 Genes Genomes Genetics, 2019, 9(8):2749-2760.
    [42] Blazie SM, Babb C, Wilky H, Rawls A, Park JG, Mangone M. Comparative RNA-Seq analysis reveals pervasive tissue-specific alternative polyadenylation in Caenorhabditis elegans intestine and muscles. BMC Biology, 2015, 13:4.
    [43] Chang TP, An BX, Liang M, Duan XH, Du LL, Cai WT, Zhu B, Gao X, Chen Y, Xu LY, Zhang LP, Gao HJ, Li JY. PacBio single-molecule long-read sequencing provides new light on the complexity of full-length transcripts in cattle. Frontiers in Genetics, 2021, 12:664974.
    [44] Abdel-Ghany SE, Hamilton M, Jacobi JL, Ngam P, Devitt N, Schilkey F, Ben-Hur A, Reddy ASN. A survey of the Sorghum transcriptome using single-molecule long reads. Nature Communications, 2016, 7:11706.
    [45] 杜宇,冯睿蓉,王杰,祝智威,张文德,余岢骏,隆琦,蔡宗兵,解彦玲,熊翠玲,郑燕珍,陈大福,郭睿.中华蜜蜂6日龄幼虫响应蜜蜂球囊菌侵染的长链非编码RNA应答研究.微生物学报, 2021, 61(5):1338-1358. Du Y, Feng RR, Wang J, Zhu ZW, Zhang WD, Yu KJ, Long Q, Cai ZB, Xie YL, Xiong CL, Zheng YZ, Chen DF, Guo R. Long non-coding RNA response of 6-day-old Apis cerana cerana larvae to Ascosphaera apis infection. Acta Microbiologica Sinica, 2021, 61(5):1338-1358.(in Chinese)
    [46] Kazimierczyk M, Kasprowicz MK, Kasprzyk ME, Wrzesinski J. Human long noncoding RNA interactome:detection, characterization and function. International Journal of Molecular Sciences, 2020, 21(3):1027.
    [47] Zhao X, Li J, Lian B, Gu H, Li Y, Qi Y. Global identification of Ara
    相似文献
    引证文献
引用本文

孙明会,刘佳美,王思懿,朱乐冉,王紫馨,叶亚萍,钱加珺,顾小雨,徐细建,陈大福,郭睿,徐国钧. 结合三代测序与二代测序技术揭示蜜蜂球囊菌孢子转录组的复杂性[J]. 微生物学报, 2022, 62(8): 2981-2994

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-11-19
  • 最后修改日期:2021-12-08
  • 在线发布日期: 2022-08-16
文章二维码