连作花魔芋软腐病株与健株根域丛枝菌根真菌群落多样性
作者:
基金项目:

国家自然科学基金(31901468);陕西省创新人才推进计划(2020KJXX-003);陕西省重点研发计划(2021NY-048);安康市科技计划(AK2020-CQ01-1);大学生创新创业训练计划(S202111397065)


Diversity of arbuscular mycorrhizal fungi in the root zone of Amorphophallus konjac with and without soft rot under continuous cropping
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】解析不同连作年限花魔芋软腐病株、健株根域的丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)群落多样性。【方法】使用AMF 18S SSU rRNA基因特异引物AMV4.5NF/AMDGR对正茬及连作2年和3年的软腐病株、健株魔芋根系和根际土壤DNA扩增建库,通过高通量测序和生物信息学分析探究魔芋软腐病与其根域AMF群落多样性的关系。【结果】魔芋根系具有明显的AMF菌丝、泡囊和丛枝等结构。在相同连作年限条件下,健株根系AMF总侵染率、侵染强度和孢子密度均显著高于病株(P<0.05);在不同连作年限条件下,病株根系AMF总侵染率和侵染强度随连作年限延长而降低。从所有样品中共鉴定到9属53种AMF,其中有49个已知种和4个新种。球囊霉属(Glomus)和类球囊霉属(Claroideoglomus)是AMF群落的优势属,其AMF种分别占总AMF种数的41.5%和26.4%;丰度最高的Paraglomus sp.VTX00308是所有样品的共有种。连作、软腐病及二者的交互作用显著影响根系AMF群落的Shannon指数和Simpson指数及根际土壤AMF的Chao1指数(P<0.05)。通过丰度差异分析发现6个在连作软腐病发生后丰度差异显著的AMF种(P<0.05);NMDS分析表明,不同连作年限的魔芋软腐病株与健株之间的根域AMF菌种组成、相对丰度和群落结构存在差异。相关性分析表明,软腐病发病率和病情指数与魔芋根系和根际土壤AMF的Shannon指数、根系AMF的Chao1和Simpson指数以及AMF总侵染率、侵染强度和孢子密度极显著负相关(P<0.01)。【结论】比对健株,连作魔芋软腐病株根际土壤AMF孢子密度以及根系AMF侵染率、种数和多样性均降低,其群落结构显著改变。

    Abstract:

    [Objective] To explore the diversity of arbuscular mycorrhizal fungi (AMF) in root zone of Amorphophallus konjac with and without soft rot under different durations of continuous cropping.[Methods] A specific primer pair (AMV4.5NF/AMDGR) targeting the 18S small subunit rRNA gene of AMF was used for PCR amplification of the DNA from the root and rhizosphere soil samples of diseased and healthy A. konjac plants under non-continuous cropping and 2 and 3 years of continuous cropping, respectively, and the DNA library was constructed. Based on high-throughput sequencing and bioinformatics analysis, the relationship between soft rot and AMF diversity in the root zone of A. konjac was investigated. [Results] AMF infection occurred in the roots of A. konjac with specific structures such as hyphae, vesicles, and arbuscules. The total infection rate, infection intensity, and spore density of AMF in healthy plants were significantly higher than those in diseased plants under the same continuous cropping duration (P<0.05). Both the total infection rate and infection intensity of AMF in diseased plants decreased remarkably with the prolongation of continuous cropping. A total of 53 species in 9 genera of AMF (49 known species and 4 novel species) were identified from all samples. Glomus and Paraglomus were the dominant genera of AMF, accounting for 41.5% and 26.4% of the total AMF community, respectively. Among the species identified, Paraglomus sp. VTX00308 showed the highest relative abundance (12.3%) and was shared by all samples. Continuous cropping duration, soft rot, and their interaction significantly affected the Shannon and Simpson indices of AMF in the roots and the Chao1 of AMF in the rhizosphere soil (P<0.05). Six AMF species considerably varied in relative abundance after soft rot occurred under continuous cropping (P<0.05). Difference in AMF species composition, relative abundance, and community structure was revealed between diseased and healthy plants under different continuous cropping durations by non-metric multidimensional scaling. Correlation analysis indicated that the incidence and severity index of soft rot were negatively correlated with the Shannon index (root and rhizosphere soil), Chao1 (root), Simpson index (root), total infection rate, infection intensity, and spore density of AMF in the root zone of A. konjac (P<0.01). [Conclusion] AMF spore density in the rhizosphere soil and AMF infection rate, species number, and community diversity in the roots of A. konjac plants with soft rot all decreased compared with those of the healthy plants, leading to remarkable shifts in the root-zone AMF community structure under continuous cropping. Our results suggest that soft rot occurrence during continuous cropping may reshape the AMF community in the root zone of A. konjac through altering the species composition, relative abundance, and diversity of AMF in both the roots and rhizosphere soil.

    参考文献
    [1] Schütz L, Saharan K, Mäder P, Boller T, Mathimaran N. Rate of hyphal spread of arbuscular mycorrhizal fungi from pigeon pea to finger millet and their contribution to plant growth and nutrient uptake in experimental microcosms. Applied Soil Ecology, 2022, 169:104156.
    [2] Cai XY, Zhao HH, Liang C, Li M, Liu RJ. Effects and mechanisms of symbiotic microbial combination agents to control tomato Fusarium crown and root rot disease. Frontiers in Microbiology, 2021, 12:629793.
    [3] Spagnoletti FN, Cornero M, Chiocchio V, Lavado RS, Roberts IN. Arbuscular mycorrhiza protects soybean plants against Macrophomina phaseolina even under nitrogen fertilization. European Journal of Plant Pathology, 2020, 156(3):839-849.
    [4] Liu N, Shao C, Sun H, Liu ZB, Guan YM, Wu LJ, Zhang LL, Pan XX, Zhang ZH, Zhang YY, Zhang B. Arbuscular mycorrhizal fungi biofertilizer improves American ginseng (Panax quinquefolius L.) growth under the continuous cropping regime. Geoderma, 2020, 363:114155.
    [5] Zanchi CS, BatistaÉR, Silva AO, Barbosa MV, Pinto FA, Santos JV, Carneiro MAC. Recovering soils affected by iron mining tailing using herbaceous species with mycorrhizal inoculation. Water, Air, and Soil Pollution, 2021, 232(3):1-13.
    [6] 林艳,何跃军,何敏红,吴春玉,方正圆,韩勖,徐鑫洋,王世雄.喀斯特植被演替过程土壤丛枝菌根真菌(AMF)多样性.生态学报, 2019, 39(11):4127-4137. Lin Y, He YJ, He MH, Wu CY, Fang ZY, Han X, Xu XY, Wang SX. Species diversity of soil arbuscular mycorrhizal fungi in Karst vegetation succession process. Acta Ecologica Sinica, 2019, 39(11):4127-4137.(in Chinese)
    [7] Ban HF, Chai XL, Lin YJ, Zhou Y, Peng DH, Zhou Y, Zou YL, Yu ZN, Sun M. Transgenic Amorphophallus konjac expressing synthesized acyl-homoserine lactonase (aiiA) gene exhibit enhanced resistance to soft rot disease. Plant Cell Reports, 2009, 28(12):1847-1855.
    [8] 陈恩发,刘辉,丁海兵,潘牧,王启富.魔芋软腐病pelDpelE基因的克隆与表达分析.西南农业学报, 2021, 34(3):495-500. Chen EF, Liu H, Ding HB, Pan M, Wang QF. Cloning and expression analysis of pelD and PelE genes from konjac soft rot pathogen. Southwest China Journal of Agricultural Sciences, 2021, 34(3):495-500.(in Chinese)
    [9] Wu JP, Jiao ZB, Zhou J, Guo FL, Ding ZL, Qiu ZM. Analysis of bacterial communities in rhizosphere soil of continuously cropped healthy and diseased konjac. World Journal of Microbiology& Biotechnology, 2017, 33(7):134.
    [10] He F. Response of root-associated bacterial communities to different degrees of soft rot damage in Amorphophallus konjac under a Robinia pseudoacacia plantation. Frontiers in Microbiology, 2021, 12:652758.
    [11] 何斐,张忠良,崔鸣,薛泉宏,王东胜.放线菌'D74'对魔芋的防病促生作用.园艺学报, 2015, 42(2):367-376. He F, Zhang ZL, Cui M, Xue QH, Wang DS. Disease prevention and growth promotion effects of actinomycete strain D74 on Amorphophallus konjac. Acta Horticulturae Sinica, 2015, 42(2):367-376.(in Chinese)
    [12] 伏云珍,马琨,崔慧珍,李光文.间作作物种间相互作用对马铃薯根际土壤丛枝菌根真菌的影响.生态学杂志, 2021, 40(1):131-139. Fu YZ, Ma K, Cui HZ, Li GW. Effects of interspecific interactions between intercropping crops on arbuscular mycorrhizal fungi in potato rhizosphere soil in the intercropping system. Chinese Journal of Ecology, 2021, 40(1):131-139.(in Chinese)
    [13] Phillips JM, Hayman DS. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 1970, 55(1):158-161.
    [14] Yang Y, Ou XH, Yang G, Xia YS, Chen ML, Guo LP, Liu DH. Arbuscular mycorrhizal fungi regulate the growth and Phyto-active compound of Salvia miltiorrhiza seedlings. Applied Sciences, 2017, 7(1):68.
    [15] Van Geel M, Busschaert P, Honnay O, Lievens B. Evaluation of six primer pairs targeting the nuclear rRNA operon for characterization of arbuscular mycorrhizal fungal (AMF) communities using 454 pyrosequencing. Journal of Microbiological Methods, 2014, 106:93-100.
    [16] Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 2011, 27(16):2194-2200.
    [17] Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 2010, 7(5):335-336.
    [18] Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, ReierÜ, Zobel M. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytologist, 2010, 188(1):223-241.
    [19] Katoh K, Rozewicki J, Yamada KD. MAFFT online service:multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 2019, 20(4):1160-1166.
    [20] Milne I, Lindner D, Bayer M, Husmeier D, McGuire G, Marshall DF, Wright F. TOPALi v2:a rich graphical interface for evolutionary analyses of multiple alignments on HPC clusters and multi-core desktops. Bioinformatics, 2009, 25(1):126-127.
    [21] Öpik M, Metsis M, Daniell TJ, Zobel M, Moora M. Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytologist, 2009, 184(2):424-437.
    [22] Lin XG, Feng YZ, Zhang HY, Chen RR, Wang JH, Zhang JB, Chu HY. Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in North China revealed by 454 pyrosequencing. Environmental Science& Technology, 2012, 46(11):5764-5771.
    [23] Dray S, Dufour AB. The ade4 Package:implementing the duality diagram for ecologists. Journal of Statistical Software, 2007, 22(4):1-20.
    [24] Wang Y, Zhang WZ, Liu WK, Ahammed GJ, Wen WX, Guo SR, Shu S, Sun J. Auxin is involved in arbuscular mycorrhizal fungi-promoted tomato growth and NADP-malic enzymes expression in continuous cropping substrates. BMC Plant Biology, 2021, 21(1):48.
    [25] Juge C, Cossette N, Jeanne T, Hogue R. Long-term revegetation on iron mine tailings in northern Québec and Labrador and its effect on arbuscular mycorrhizal fungi. Applied Soil Ecology, 2021, 168:104145.
    [26] Li MH, Hou SW, Wang JH, Hu JL, Lin XG. Arbuscular mycorrhizal fungus suppresses tomato (Solanum lycopersicum Mill.)Ralstonia wilt via establishing a soil-plant integrated defense system. Journal of Soils and Sediments, 2021, 21(11):3607-3619.
    [27] Prayudyaningsih R, Nursyamsi N. Diversity of tuber crops and arbuscular mycorrhizae fungi (AMF) under community forest stand in South Sulawesi. Jurnal Penelitian Kehutanan Wallacea, 2015, 4(1):81-92.
    [28] 施晓峰,黄晶晶,史亚,丁志山,程东庆.半夏丛枝菌根真菌多样性研究.陕西中医药大学学报, 2017, 40(3):75-81. Shi XF, Huang JJ, Shi Y, Ding ZS, Cheng DQ. On AMF diversity of Pinellia ternate. Journal of Shaanxi University of Chinese Medicine, 2017, 40(3):75-81.(in Chinese)
    [29] Wu JP, Diao Y, Gu YC, Hu ZL. Infection pathways of soft rot pathogens on Amorphophallus konjac. African Journal of Microbiology Research, 2010, 4(14):1495-1499.
    [30] 赵之伟,李习武,王国华,程立忠,沙涛,杨玲,任立成.西双版纳热带雨林中丛枝菌根真菌的初步研究.菌物系统, 2001, 20(3):316-323. Zhao ZW, Li XW, Wang GH, Cheng LZ, Sha T, Yang L, Ren LC. Am fungi in the tropical rain forest of Xishuangbanna. Mycosystema, 2001, 20(3):316-323.(in Chinese)
    [31] 高岩,佟有贵,马焕成,伍建榕,李雪,杨晓倩.丛枝菌根真菌(AMF)对鸡蛋花干腐病的抗性研究.西部林业科学, 2020, 49(2):128-136. Gao Y, Tong YG, Ma HC, Wu JR, Li X, Yang XQ. The resistance of Plumeria rubra to dry rot by arbuscular mycorrhizal fungi (AMF). Journal of West China Forestry Science, 2020, 49(2):128-136.(in Chinese)
    [32] 朱红惠,龙良坤,羊宋贞,姚青. AM真菌对青枯菌和根际细菌群落结构的影响.菌物学报, 2005, 24(1):137-142. Zhu HH, Long LK, Yang SZ, Yao Q. Influence of AM fungus on Ralstonia solanacearum population and bacterial community structure in rhizosphere. Mycosystema, 2005, 24(1):137-142.(in Chinese)
    [33] 朱红惠,姚青,李浩华,羊宋贞. AM真菌对青枯菌的抑制和对酚类物质的影响.微生物学通报, 2004, 31(1):1-5. Zhu HH, Yao Q, Li HH, Yang SZ. Inhibition of Ralstonia solanacearum by AM fungus Glomus versiforme and their effect on phenols in root. Microbiology China, 2004, 31(1):1-5.(in Chinese)
    [34] 曾维爱,龙世平,李宏光,彭福元,黄艳宁.苗期接种不同丛枝菌根真菌对烟草青枯病防治效果的影响.南方农业学报, 2011, 42(6):612-615. Zeng WA, Long SP, Li HG, Peng FY, Huang YN. Effects of inoculating different arbuscular mycorrhizal fungus at seedling stage on wilt disease resistance in tobacco. Journal of Southern Agriculture, 2011, 42(6):612-615.(in Chinese)
    [35] 江龙,王智明,张长华,黄建国,袁玲.菌根烟苗的抗青枯病效应研究.中国烟草学报, 2009, 15(6):49-52. Jiang L, Wang ZM, Zhang CH, Huang JG, Yuan L. Research on wilt disease resistance of AM mycorrhizal tobacco seedlings. Acta Tabacaria Sinica, 2009, 15(6):49-52.(in Chinese)
    [36] Himaya SMMS, Sivasubramaniam N, Afreen SMMS. A review on role of mycorrhizal fungi in plant disease management. Sri Lankan Journal of Technology, 2021, 1(2):41-50.
    [37] 何斐,崔鸣,李川,鲁小东.菌剂与钾肥配施对连作魔芋生长、生理代谢和发病率的影响.西北农业学报, 2020, 29(7):1095-1105. He F, Cui M, Li C, Lu XD. Effects of agent and potassium fertilizer on plant growth, physiological metabolism and disease incidence in continuous cropping of Amorphophallus konjac. Acta Agriculturae Boreali-Occidentalis Sinica, 2020, 29(7):1095-1105.(in Chinese)
    [38] 杨敏,裴卫华,董家红,潘开华,吴德喜,余磊.魔芋连作对根际土壤微生物数量及酶活性的影响.北方园艺, 2018(23):110-115. Yang M, Pei WH, Dong JH, Pan KH, Wu DX, Yu L. Effect of long-term continuous cropping with Amorphophallus konjac on rhizosphere soil microflora and enzyme activities. Northern Horticulture, 2018(23):110-115.(in Chinese)
    [39] 张之为,田永伟,杨剑峰,王超,张键,赵君,王东,郑红丽.内蒙古中部地区马铃薯根际和根系丛枝菌根真菌类群的多样性.微生物学通报, 2020, 47(3):738-748. Zhang ZW, Tian YW, Yang JF, Wang C, Zhang J, Zhao J, Wang D, Zheng HL. Arbuscular mycorrhizal fungi population diversity of rhizosphere soil and root system in potato field in central Inner Mongolia. Microbiology China, 2020, 47(3):738-748.(in Chinese)
    [40] Brito I, Goss MJ, De Carvalho M, Chatagnier O, Van Tuinen D. Impact of tillage system on arbuscular mycorrhiza fungal communities in the soil under Mediterranean conditions. Soil and Tillage Research, 2012, 121:63-67.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

何斐,田孝威,雷雨俊,邵永春,毛洁,卢谢敏,王莹,段园鹏,刘富强. 连作花魔芋软腐病株与健株根域丛枝菌根真菌群落多样性[J]. 微生物学报, 2022, 62(8): 3092-3108

复制
分享
文章指标
  • 点击次数:326
  • 下载次数: 830
  • HTML阅读次数: 1083
  • 引用次数: 0
历史
  • 收稿日期:2021-12-05
  • 最后修改日期:2022-02-20
  • 在线发布日期: 2022-08-16
文章二维码