铜绿假单胞菌在液滴界面的二维和三维运动特征
作者:
基金项目:

国家自然科学基金(41877412);中国农业大学2115人才培育发展支持计划(1191-00109012);国家高层次青年人才项目(21968001)


Two-dimensional and three-dimensional motion of Pseudomonas aeruginosa at the droplet interface
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [44]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】环境中无处不在的气-液界面能够影响细菌的运动和养分的传输扩散,进而调控微生物的种群互作和群落结构。因此,系统地认知微生物在微观界面的运动特征对于理解和解析微生物多样性的产生、维持机制以及生态功能至关重要。【方法】本文基于微流体显微系统(超高速荧光显微镜和数字全息显微镜),以具备主动运动能力的模式菌株铜绿假单胞菌(Pseudomonas aeruginosa PAO1)为研究对象,观测并解析了细菌细胞在气-液界面的二维运动特征和气-液-固界面的二维与三维运动特征。【结果】PAO1既能在气-液界面处执行近似直线轨迹的运动,也能在气-液界面下方执行顺时针或逆时针旋转的圆周运动(最小曲率半径Rmin=3µm)。在气-液-固界面处,6.45%的不运动细胞聚集于气-液-固界面边缘处,并在该处完成不可逆附着;同时,游动细胞由于受到液滴内部毛细管流和马兰戈尼(Marangoni)涡流运动的综合作用,直线游动至距界面约40 μm内的区域后,其运动轨迹转变为垂直界面方向返回或以近似界面平行方向运动并附着,这些行为显著调节了PAO1的空间分布,促使了其朝向气-液-固界面的迁移,表明个体PAO1的鞭毛在此处的主动游动作用较弱。【结论】PAO1在气-液界面处能够执行与固-液界面类似的运动轨迹,且能够在各种作用力下朝向气-液-固界面运动并附着。

    Abstract:

    [Objective] The ubiquitous air-liquid interfaces affect bacterial motility and nutrient transport, thereby regulating the interaction among microbial populations and microbial community structure. Therefore, it is of vital importance for understanding and elucidating the mechanisms of microbial diversity generation and maintenance as well as the ecological functions to clarify the movement characteristics of microorganisms at microscopic interfaces. [Methods] With microfluidic microscopes (ultra-high speed fluorescence microscope and digital holographic microscope), we quantified the movement patterns of Pseudomonas aeruginosa (PAO1) cells near air-liquid-solid and air-liquid interfaces of droplet. [Results] Below the air-liquid interfaces, the trajectories of PAO1 are as follows:straight lines, clockwise circles, or counterclockwise circles with Rmin(minimum radius of curvature)=3 µm. At the air-liquid-solid interfaces, 6.45% of the immobile cells accumulated at the edge of the interfaces and completed irreversible attachment directly. Meanwhile, due to capillary flow and Marangoni effect inside the droplet, mobile cells returned in the direction perpendicular to the interface or moved in the direction approximately parallel to the interface and attached after swimming in a straight line to a region within about 40 µm from the interface. These behaviors significantly modulated the spatial distribution of PAO1, promoting the migration toward the air-liquid-solid interface. Therefore, the active flagellar motility played a little role in the process. [Conclusion] With similar trajectories in both the solid-liquid interfaces and the air-liquid interfaces, PAO1 can move towards and subsequently attach onto the air-liquid-solid interfaces under the complex cell-surface interfacial forces.

    参考文献
    [1] Retzer JL, Lyon TL, Buckman HO, Brady NC. The nature and properties of soils. Journal of Range Management, 1952, 5(6):420.
    [2] Wu YC, Cai P, Jing XX, Niu XK, Ji DD, Ashry NM, Gao CH, Huang QY. Soil biofilm formation enhances microbial community diversity and metabolic activity. Environment International, 2019, 132:105116.
    [3] Bodenmiller D, Toh E, Brun YV. Development of surface adhesion in Caulobacter crescentus.Journal of Bacteriology, 2004, 186(5):1438-1447.
    [4] Berne C, Ellison CK, Ducret A, Brun YV. Bacterial adhesion at the single-cell level. Nature Reviews Microbiology, 2018, 16(10):616-627.
    [5] Sartori P, Chiarello E, Jayaswal G, Pierno M, Mistura G, Brun P, Tiribocchi A, Orlandini E. Wall accumulation of bacteria with different motility patterns. Physical Review E, 2018, 97(2):022610.
    [6] Watnick PI, Lauriano CM, Klose KE, Croal L, Kolter R. The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139. Molecular Microbiology, 2001, 39(2):223-235.
    [7] Wu KT, Hsiao YT, Woon WY. Entrapment of pusher and puller bacteria near a solid surface. Physical Review E, 2018, 98(5):052407.
    [8] Molaei M, Barry M, Stocker R, Sheng J. Failed escape:solid surfaces prevent tumbling of Escherichia coli. Physical Review Letters, 2014, 113(6):068103.
    [9] Bianchi S, Saglimbeni F, Frangipane G, Dell'Arciprete D, Leonardo RD. 3D dynamics of bacteria wall entrapment at a water-air interface.Soft Matter, 2019, 15(16):3397-3406.
    [10] Holwill MEJ, Burge RE. A hydrodynamic study of the motility of flagellated bacteria. Archives of Biochemistry and Biophysics, 1963, 101(2):249-260.
    [11] Li GL, Tang JX. Accumulation of microswimmers near a surface mediated by collision and rotational Brownian motion. Physical Review Letters, 2009, 103(7):078101.
    [12] Jin F, Conrad JC, Gibiansky ML, Wong GCL. Bacteria use type-Ⅳ pili to slingshot on surfaces. PNAS, 2011, 108(31):12617-12622.
    [13] 朱晓艳,沈重阳,陈国炜,张伟,李保国,王钢.土壤细菌趋化性研究进展.土壤学报, 2019, 56(2):259-275. Zhu XY, Shen CY, Chen GW, Zhang W, Li BG, Wang G. Advancement in research on bacterial chemotaxis in soil. Acta Pedologica Sinica, 2019, 56(2):259-275.(in Chinese)
    [14] Hook AL, Flewellen JL, Dubern JF, Carabelli AM, Zaid IM, Berry RM, Wildman RD, Russell N, Williams P, Alexander MR. Simultaneous tracking of Pseudomonas aeruginosa motility in liquid and at the solid-liquid interface reveals differential roles for the flagellar stators. mSystems, 2019, 4(5):e00390-19.
    [15] Tinevez JY, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E, Bednarek SY, Shorte SL, Eliceiri KW. TrackMate:an open and extensible platform for single-particle tracking. Methods, 2017, 115:80-90.
    [16] Qian H, Sheetz MP, Elson EL. Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophysical Journal, 1991, 60(4):910-921.
    [17] Saxton MJ, Jacobson K. Single-particle tracking:applications to membrane dynamics. Annual Review of Biophysics and Biomolecular Structure, 1997, 26:373-399.
    [18] Roberts G. Encyclopedia of biophysics. Berlin:Springer, 2012.
    [19] Magariyama Y, Ichiba M, Nakata K, Baba K, Ohtani T, Kudo S, Goto T. Difference in bacterial motion between forward and backward swimming caused by the wall effect. Biophysical Journal, 2005, 88(5):3648-3658.
    [20] Utada AS, Bennett RR, Fong JCN, Gibiansky ML, Yildiz FH, Golestanian R, Wong GCL. Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment. Nature Communications, 2014, 5:4913.
    [21] 杨杰.数字图像处理及MATLAB实现.北京:电子工业出版社, 2010.
    [22] 杨丹,赵海滨,龙哲,徐彬,张志美,赵薇. MATLAB图像处理实例详解.北京:清华大学出版社, 2013.
    [23] Lemelle L, Palierne JF, Chatre E, Place C. Counterclockwise circular motion of bacteria swimming at the air-liquid interface. Journal of Bacteriology, 2010, 192(23):6307-6308.
    [24] Di Leonardo R, Dell'Arciprete D, Angelani L, Iebba V. Swimming with an image.Physical Review Letters, 2011, 106(3):038101.
    [25] Berke AP, Turner L, Berg HC, Lauga E. Hydrodynamic attraction of swimming microorganisms by surfaces. Physical Review Letters, 2008, 101(3):038102.
    [26] Spagnolie SE, Lauga E. Hydrodynamics of self-propulsion near a boundary:predictions and accuracy of far-field approximations. Journal of Fluid Mechanics, 2012, 700:105-147.
    [27] 韩苗,朱晓艳,陈国炜,万小铭,王钢.解钾菌及其释钾微观机制的研究进展.土壤学报, 2022, 59(2):334-348. Han M, Zhu XY, Chen GW, Wan XM, Wang G. Advances on potassium-solubilizing bacteria and their microscopic potassium solubilizing mechanisms. Acta Pedologica Sinica, 2022, 59(2):334-348.(in Chinese)
    [28] Desai N, Shaik VA, Ardekani AM. Hydrodynamic interaction enhances colonization of sinking nutrient sources by motile microorganisms. Frontiers in Microbiology, 2019, 10:289.
    [29] Berg HC, Turner L. Chemotaxis of bacteria in glass capillary arrays. Escherichia coli, motility, microchannel plate, and light scattering. Biophysical Journal, 1990, 58(4):919-930.
    [30] Goto T, Nakata K, Baba K, Nishimura M, Magariyama Y. A fluid-dynamic interpretation of the asymmetric motion of singly flagellated bacteria swimming close to a boundary. Biophysical Journal, 2005, 89(6):3771-3779.
    [31] Qian C, Wong CC, Swarup S, Chiam KH. Bacterial tethering analysis reveals a "run-reverse-turn" mechanism for Pseudomonas species motility. Applied and Environmental Microbiology, 2013, 79(15):4734-4743.
    [32] Lauga E, Di Luzio WR, Whitesides GM, Stone HA. Swimming in circles:motion of bacteria near solid boundaries. Biophysical Journal, 2006, 90(2):400-412.
    [33] Li GL, Tam LK, Tang JX. Amplified effect of Brownian motion in bacterial near-surface swimming. PNAS, 2008, 105(47):18355-18359.
    [34] Gordon VD, Wang LY. Bacterial mechanosensing:the force will be with you, always. Journal of Cell Science, 2019, 132(7):jcs227694.
    [35] Shum H, Gaffney EA, Smith DJ. Modelling bacterial behaviour close to a no-slip plane boundary:the influence of bacterial geometry. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2010, 466(2118):1725-1748.
    [36] Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA. Contact line deposits in an evaporating drop. Physical Review E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2000, 62(1 Pt B):756-765.
    [37] Cazabat AM, Guéna G. Evaporation of macroscopic sessile droplets. Soft Matter, 2010, 6(12):2591.
    [38] Pandey K, Hatte S, Pandey K, Chakraborty S, Basu S. Cooperative evaporation in two-dimensional droplet arrays. Physical Review E, 2020, 101(4-1):043101.
    [39] Ruan C, Ramoneda J, Chen G, Johnson DR, Wang G. Evaporation-induced hydrodynamics promote conjugation-mediated plasmid transfer in microbial populations. ISME Communications, 2021, 1:54.
    [40] Sempels W, De Dier R, Mizuno H, Hofkens J, Vermant J. Auto-production of biosurfactants reverses the coffee ring effect in a bacterial system. Nature Communications, 2013, 4:1757.
    [41] Chauveau C, Birouk M, Halter F, Gökalp I. An analysis of the droplet support fiber effect on the evaporation process. International Journal of Heat and Mass Transfer, 2019, 128:885-891.
    [42] Dechesne A, Wang G, Gülez G, Or D, Smets BF. Hydration-controlled bacterial motility and dispersal on surfaces. PNAS, 2010, 107(32):14369-14372.
    [43] Still T, Yunker PJ, Yodh AG. Surfactant-induced Marangoni eddies alter the coffee-rings of evaporating colloidal drops. Langmuir:the ACS Journal of Surfaces and Colloids, 2012, 28(11):4984-4988.
    [44] Abo Jabal M, Homede E, Zigelman A, Manor O. Coupling between wetting dynamics, Marangoni vortices, and localized hot cells in drops of volatile binary solutions. Journal of Colloid and Interface Science, 2021, 588:571-579.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

朱晓艳,韩苗,韩天富,韩峥,王钢. 铜绿假单胞菌在液滴界面的二维和三维运动特征[J]. 微生物学报, 2022, 62(8): 3124-3136

复制
分享
文章指标
  • 点击次数:364
  • 下载次数: 943
  • HTML阅读次数: 943
  • 引用次数: 0
历史
  • 收稿日期:2021-12-07
  • 最后修改日期:2022-02-17
  • 在线发布日期: 2022-08-16
文章二维码