转录组和蛋白组联合分析揭示Ubr1介导的白僵菌萌发和极性生长
作者:
基金项目:

国家自然科学基金(32001965,32072481)


Analysis of Ubr1-mediated germination and polar growth of Beauveria bassiana based on the combination of transcriptome and proteome
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】通过比较球孢白僵菌野生型和ubr1基因缺失菌株分生孢子在同一时间点转录组学和蛋白组学的差异表达基因和蛋白及其所属通路,阐明Ubr1影响球孢白僵菌极性生长的机制,为提高球孢白僵菌生物防治潜能提供理论依据。【方法】通过对转录组学和蛋白组学的KEGG分析,获得差异表达基因和蛋白所在代谢调控通路,利用显微镜拍摄菌株在各萌发培养基(germination medium,GM)衍生板中分生孢子萌发的图像验证双组学分析中显著差异的调控通路对分生孢子极性生长的影响。【结果】ubr1基因缺失使分生孢子萌发受损,形成异常弯曲或钩状的芽管。且不论是以转录组,还是以蛋白质组为核心进行双组学KEGG联合分析,二者都能富集到氮代谢、精氨酸和脯氨酸代谢和醚脂类代谢通路。进一步的验证实验表明,球孢白僵菌中ubr1基因缺失引起的精氨酸代谢异常是分生孢子极性生长紊乱的一个重要原因,而半乳糖和氮代谢异常则会导致分生孢子的萌发速率变慢。【结论】Ubr1的缺失使精氨酸代谢受阻,进而导致分生孢子萌发管极性生长异常;同时,也使半乳糖和氮代谢异常导致分生孢子萌发速率延迟。本研究的发现对于认识极性生长的机制具有一定贡献,也拓展了丝状真菌侵染循环中体壁穿透过程的理论认识。

    Abstract:

    [Objective] To clarify the mechanism of Ubr1 affecting the polar growth of Beauveria bassiana based on the differentially expressed genes (DEGs) and proteins (DEPs) and their pathways in the conidia of the wild-type (WT) and ubr1-deleted (Δubr1) strains at the same time point and thus to lay a theoretical basis for improving potential of B. bassiana for biocontrol. [Methods] Through KEGG analysis of the transcriptome and proteome, the pathways of the DEGs and DEPs were clarified. The germinated conidia in each germination medium (GM)-derived plate were photographed with a microscope to verify the influence of the differential pathways on polar growth of the conidia.[Results] ubr1 deletion impaired the germination of conidia, resulting in abnormally curved or hook-shaped germ tubes. Both the DEGs and DEPs were involved in nitrogen metabolism, arginine and proline metabolism, and ether ester metabolism. Further verification showed that abnormal arginine metabolism caused by ubr1 deletion was an important reason for the disorder of conidial polar growth and that abnormal metabolism of galactose and nitrogen led to slow germination of conidia. [Conclusion]The absence of ubr1 blocks arginine metabolism, resulting in abnormal polar growth of germ tube. The abnormal metabolism of galactose and nitrogen also delays the germination of conidia. The findings are expected to enhance the understanding of the mechanism of polar growth and the penetration process in the infection cycle of filamentous fungi.

    参考文献
    [1] Bextine BR, Thorvilson HG. Field applications of bait-formulated Beauveria bassiana alginate pellets for biological control of the red imported fire ant (Hymenoptera:Formicidae). Environmental Entomology, 2002, 31(4):746-752.
    [2] De Faria MR, Wraight SP. Mycoinsecticides and mycoacaricides:a comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, 2007, 43(3):237-256.
    [3] Ullah MS, Lim UT. Laboratory bioassay of Beauveria bassiana against Tetranychus urticae(Acari:Tetranychidae) on leaf discs and potted bean plants. Experimental& Applied Acarology, 2015, 65(3):307-318.
    [4] 黄少华,张宝鑫,李敦松,冯莉,陈万良.珠江三角洲甜玉米螟害防治试验初报.广东农业科学, 2004, 31(1):44-46. Huang SH, Zhang BX, Li DS, Feng L, Chen WL. Preliminary report on control of sweet corn borer in Pearl River Delta. Guangdong Agricultural Science, 2004, 31(1):44-46.(in Chinese)
    [5] 刘晓晓,王星冉,王义勋,黄俊斌,陈京元,郑露.马尾松毛虫高毒力球孢白僵菌菌株的生物学特性.南方农业学报, 2017, 48(6):1019-1023. Liu XX, Wang XR, Wang YX, Huang JB, Chen JY, Zheng L. Biological characteristics of highly virulent strains of Beauveria bassiana for Dendrolimus punctatus. Journal of Southern Agriculture, 2017, 48(6):1019-1023.(in Chinese)
    [6] Cai Q, Tong SM, Shao W, Ying SH, Feng MG. Pleiotropic effects of the histone deacetylase Hos2 linked to H4-K16 deacetylation, H3-K56 acetylation, and H2A-S129 phosphorylation in Beauveria bassiana. Cellular Microbiology, 2018, 20(7):e12839.
    [7] 余素红,曾明森,吴光远.球孢白僵菌的研究应用与展望.茶叶科学技术, 2009, 50(3):8-11. Yu SH, Zeng MS, Wu GY. Research, application and prospect of Beauveria bassiana. Tea Science and Technology, 2009, 50(3):8-11.(in Chinese)
    [8] Wang DY, Mou YN, Tong SM, Ying SH, Feng MG. Photoprotective role of photolyase-interacting RAD23 and its pleiotropic effect on the insect-pathogenic fungus Beauveria bassiana. Applied and Environmental Microbiology, 2020, 86(11):e00287-00220.
    [9] Wang J, Chen JW, Hu Y, Ying SH, Feng MG. Roles of six Hsp70 genes in virulence, cell wall integrity, antioxidant activity and multiple stress tolerance of Beauveria bassiana. Fungal Genetics and Biology, 2020, 144:103437.
    [10] Zhang LB, Feng MG. Antioxidant enzymes and their contributions to biological control potential of fungal insect pathogens. Applied Microbiology and Biotechnology, 2018, 102(12):4995-5004.
    [11] Groth A, Schunke C, Reschka EJ, Pöggeler S, Nordzieke DE. Tracking fungal growth:establishment of Arp1 as a marker for polarity establishment and active hyphal growth in filamentous Ascomycetes. Journal of Fungi:Basel, Switzerland, 2021, 7(7):580.
    [12] Mutz KO, Heilkenbrinker A, Lönne M, Walter JG, Stahl F. Transcriptome analysis using next-generation sequencing. Current Opinion in Biotechnology, 2013, 24(1):22-30.
    [13] Otto A, Becher D, Schmidt F. Quantitative proteomics in the field of microbiology. Proteomics, 2014, 14(4/5):547-565.
    [14] Mou YN, Fu B, Ren K, Ying SH, Feng MG. A small cysteine-free protein acts as a novel regulator of fungal insect-pathogenic lifecycle and genomic expression. mSystems, 2021, 6(2):e00098-e00021.
    [15] Wang DY, Tong SM, Guan Y, Ying SH, Feng MG. The velvet protein VeA functions in asexual cycle, stress tolerance and transcriptional regulation of Beauveria bassiana. Fungal Genetics and Biology:FG& B, 2019, 127:1-11.
    [16] Zhao TT, Tian HT, Xia YX, Jin K. MaPmt4, a protein O-mannosyltransferase, contributes to cell wall integrity, stress tolerance and virulence in Metarhizium acridum. Current Genetics, 2019, 65(4):1025-1040.
    [17] 蒋可人,马峥,郑航,刘小军.转录组与蛋白质组整合分析在生物学研究中的应用.生物技术通报, 2018, 34(12):50-55. Jiang KR, Ma Z, Zheng H, Liu XJ. Review on the application of integrated transcriptome and proteome analysis in biology. Biotechnology Bulletin, 2018, 34(12):50-55.(in Chinese)
    [18] Manzoni C, Kia DA, Vandrovcova J, Hardy J, Wood NW, Lewis PA, Ferrari R. Genome, transcriptome and proteome:the rise of omics data and their integration in biomedical sciences. Briefings in Bioinformatics, 2016, 19(2):286-302.
    [19] Paczesny S. Biomarkers for posttransplantation outcomes. Blood, 2018, 131(20):2193-2204.
    [20] Chalmel F, Rolland AD. Linking transcriptomics and proteomics in spermatogenesis. Reproduction:Cambridge, England, 2015, 150(5):R149-R157.
    [21] Li ZW, Zhou X, Zhu HQ, Song X, Gao HJ, Niu ZY, Lu J. Purpurin binding interacts with LHPP protein that inhibits PI3K/AKT phosphorylation and induces apoptosis in colon cancer cells HCT-116. Journal of Biochemical and Molecular Toxicology, 2021, 35(3):e22665.
    [22] Lin Q, Xie YJ, Guan WQ, Duan YQ, Wang ZD, Sun CD. Combined transcriptomic and proteomic analysis of cold stress induced sugar accumulation and heat shock proteins expression during postharvest potato tuber storage. Food Chemistry, 2019, 297:124991.
    [23] 白嵩,林文贵,赵均良,马雅美,孔雷蕾,张少红,倪世明.转录组与蛋白组技术结合分析水稻耐低温分子机制.分子植物育种, 2021, 19(12):3837-3848. Bai S, Lin WG, Zhao JL, Ma YM, Kong LL, Zhang SH, Ni SM. The molecular mechanisms of cold tolerance in rice revealed by transcriptomics and proteomics analysis. Molecular Plant Breeding, 2021, 19(12):3837-3848.(in Chinese)
    [24] Eisele F, Wolf DH. Degradation of misfolded protein in the cytoplasm is mediated by the ubiquitin ligase Ubr1. FEBS Letters, 2008, 582(30):4143-4146.
    [25] Nillegoda NB, Theodoraki MA, Mandal AK, Mayo KJ, Ren HY, Sultana R, Wu K, Johnson J, Cyr DM, Caplan AJ. Ubr1 and Ubr2 function in a quality control pathway for degradation of unfolded cytosolic proteins. Molecular Biology of the Cell, 2010, 21(13):2102-2116.
    [26] Lu Y, Su C, Unoje O, Liu HP. Quorum sensing controls hyphal initiation in Candida albicans through Ubr1-mediated protein degradation. PNAS, 2014, 111(5):1975-1980.
    [27] Ridenour JB, Smith JE, Hirsch RL, Horevaj P, Kim H, Sharma S, Bluhm BH. UBL1 of Fusarium verticillioides links the N-end rule pathway to extracellular sensing and plant pathogenesis. Environmental Microbiology, 2014, 16(7):2004-2022.
    [28] Wang DY, Mou YN, Du X, Guan Y, Feng MG. Ubr1-mediated ubiquitylation orchestrates asexual development, polar growth, and virulence-related cellular events in Beauveria bassiana. Applied Microbiology and Biotechnology, 2021, 105(7):2747-2758.
    [29] Peng YJ, Ding JL, Feng MG, Ying SH. Glc8, a regulator of protein phosphatase type 1, mediates oxidation tolerance, asexual development and virulence in Beauveria bassiana, a filamentous entomopathogenic fungus. Current Genetics, 2019, 65(1):283-291.
    [30] 淡明,黄海波,郭安平,贺立卡.一种简单高效的真菌总RNA提取方法.福建热作科技, 2006, 31(4):19-20. Dan M, Huang HB, Guo AP, He LK. A simple and efficient method for extracting fungal total RNA. Fujian Science& Technology of Tropical Crops, 2006, 31(4):19-20.(in Chinese)
    [31] Chu ZJ, Wang YJ, Ying SH, Wang XW, Feng MG. Genome-wide host-pathogen interaction unveiled by transcriptomic response of diamondback moth to fungal infection. PLoS One, 2016, 11(4):e0152908.
    [32] Feil G, Horres R, Schulte J, Mack AF, Petzoldt S, Arnold C, Meng C, Jost L, Boxleitner J, Kiessling-Wolf N, Serbest E, Helm D, Kuster B, Hartmann I, Korff T, Hahne H. Bacterial cellulose shifts transcriptome and proteome of cultured endothelial cells towards native differentiation. Molecular& Cellular Proteomics, 2017, 16(9):1563-1577.
    [33] Peng ZY, Wang MC, Li F, Lv HJ, Li CL, Xia GM. A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Molecular& Cellular Proteomics, 2009, 8(12):2676-2686.
    [34] Pfannmüller A, Leufken J, Studt L, Michielse CB, Sieber CMK, Güldener U, Hawat S, Hippler M, Fufezan C, Tudzynski B. Comparative transcriptome and proteome analysis reveals a global impact of the nitrogen regulators AreA and AreB on secondary metabolism in Fusarium fujikuroi. PLoS One, 2017, 12(4):e0176194.
    [35] Ullman S, Harari D, Dorfman N. From simple innate biases to complex visual concepts. PNAS, 2012, 109(44):18215-18220.
    [36] Fischer R, Zekert N, Takeshita N. Polarized growth in fungi-interplay between the cytoskeleton, positional markers and membrane domains. Molecular Microbiology, 2008, 68(4):813-826.
    [37] Takeshita N, Manck R, Grün N, De Vega SH, Fischer R. Interdependence of the actin and the microtubule cytoskeleton during fungal growth. Current Opinion in Microbiology, 2014, 20:34-41.
    [38] Li HY, Barker BM, Grahl N, Puttikamonkul S, Bell JD, Craven KD, Cramer RA Jr. The small GTPase RacA mediates intracellular reactive oxygen species production, polarized growth, and virulence in the human fungal pathogen Aspergillus fumigatus. Eukaryotic Cell, 2011, 10(2):174-186.
    [39] 刘慧敏,马彦.烟曲霉极性生长相关基因研究进展.中国真菌学杂志, 2021, 16(4):279-283. Liu HM, Ma Y. Research progress on polar growth related genes of Aspergillus fumigatus. Chinese Journal of Mycology, 2021, 16(4):279-283.(in Chinese)
    [40] Ren K, Mou YN, Tong SM, Ying SH, Feng MG. DIM5/KMT1 controls fungal insect pathogenicity and genome stability by methylation of histone H3K4, H3K9 and H3K36. Virulence, 2021, 12(1):1306-1322.
    [41] 曾钰,闫磊,刘亚林,曾紫君,姜存仓.外源脯氨酸对缺硼下棉花幼苗生长、生理特性以及脯氨酸代谢的影响.棉花学报, 2020, 32(3):258-268. Zeng Y, Yan L, Liu YL, Zeng ZJ, Jiang CC. Effects of exogenous proline on the growth, physiological characteristics, and proline metabolism of cotton seedlings under boron deficiency stress. Cotton Science, 2020, 32(3):258-268.(in Chinese)
    [42] Brivio MF, Mastore M. When appearance misleads:the role of the entomopathogen surface in the relationship with its host. Insects, 2020, 11(6):387.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郭鸿蓉,林晓凤,朱玲,王定一,吴福忠. 转录组和蛋白组联合分析揭示Ubr1介导的白僵菌萌发和极性生长[J]. 微生物学报, 2022, 62(8): 3176-3189

复制
分享
文章指标
  • 点击次数:335
  • 下载次数: 1071
  • HTML阅读次数: 943
  • 引用次数: 0
历史
  • 收稿日期:2021-12-14
  • 最后修改日期:2022-04-02
  • 在线发布日期: 2022-08-16
文章二维码