DegU负调控地衣芽胞杆菌普切明酸的合成及分泌
作者:
基金项目:

国家自然科学基金(31900026);湖北省烟草公司技术开发项目(027Y2021-023)


Pulcherriminic acid synthesis and secretion are negatively regulated by DegU in Bacillus licheniformis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    普切明酸是地衣芽胞杆菌合成并分泌的一种铁离子螯合剂,是细胞维持铁稳态的重要介质。【目的】揭示转录调控因子DegU在调控普切明酸的合成及分泌过程中的作用。【方法】以地衣芽胞杆菌DW2为出发菌株,构建degU缺失菌株DW2ΔdegU和过表达菌株DW2::Pbay-degU,通过产物检测、转录水平检测、凝胶阻滞分析和GFP报告蛋白表达分析等方法分析DegU对普切明酸合成、分泌及调控因子基因的转录调控机制。【结果】DW2ΔdegU的普切明酸产量相比于DW2提高了56.8%,而DW2::Pbay-degU相比于DW2菌株则下降83.7%。同时,degU缺失后,普切明酸合成酶基因yvmC和转运蛋白基因yvmA的转录水平分别上升为DW2的2.85倍和2.71倍,yvmCyvmA的负调控因子基因yvmB的转录水平则下降为DW2的0.35倍;而在DW2::Pbay-degU菌株中,yvmCyvmA的转录水平分别下降为DW2的0.47倍和0.24倍,yvmB的转录水平则上升为DW2的1.78倍。凝胶阻滞分析和GFP报告蛋白表达分析表明,DegU可以直接与PyvmC和PyvmB启动子结合,但是与yvmA基因启动子没有直接相互作用。【结论】DegU通过2种模式调控普切明酸合成基因簇的转录,DegU可以通过直接与yvmC-cypX基因簇启动子结合对其进行负调控,另一方面,DegU也可以通过直接激活普切明酸合成的负调控因子基因yvmB的表达对yvmC-cypX和普切明酸转运蛋白基因yvmA起到间接负调控的作用。

    Abstract:

    Pulcherriminic acid synthesized and secreted by Bacillus licheniformis is an iron chelator that helps to maintain iron homeostasis by removing Fe3+ from the environment. [Objective] This study is to investigate the regulatory mechanisms of DegU in the synthesis and secretion of pulcherriminic acid. [Methods] Based on the native strain B. licheniformis DW2 and its derivative strains DW2ΔdegU (degU deletion) and DW2::Pbay-degU (degU overexpression), this study excavated the regulatory mechanisms of DegU in the synthesis and secretion of pulcherriminic acid by determining pulcherriminic acid content, real-time quantitative polymerase chain reaction (RT-qPCR), electrophoretic mobility shift assay (EMSA), and green fluorescent protein (GFP) expression assay. [Results] The pulcherriminic acid yield of DW2ΔdegU was 56.8% higher than that of DW2, while the yield of DW2::Pbay-degU was 83.7% lower than that of DW2. In addition, after degU deletion, compared with the condition of DW2, the transcriptional levels of pulcherriminic acid synthetase genes yvmC and transporter gene yvmA increased to 2.85 and 2.71 times, respectively, whereas the transcriptional level of yvmB, another negative regulator gene of yvmC and yvmA, decreased to 0.35 times. In DW2::Pbay-degU, the transcription levels of yvmC and yvmA reduced to 0.47 and 0.24 times, respectively, while the transcription level of yvmB rose to 1.78 times that of DW2. EMSA and GFP expression assay showed that DegU could directly bind to PyvmC and PyvmB promoters, but had no direct interaction with the promoter of yvmA (PyvmA). [Conclusion] DegU regulated the synthesis and secretion of pulcherriminic acid in two ways:on the one hand, DegU negatively regulated yvmC by directly binding to the promoter of yvmC-cypX cluster; on the other hand, DegU activated the expression of yvmB and negatively regulated yvmC-cypX and yvmA in an indirect way.

    参考文献
    [1] Eid R, Arab NT, Greenwood MT. Iron mediated toxicity and programmed cell death:a review and a re-examination of existing paradigms. Biochimica et Biophysica Acta Molecular Cell Research, 2017, 1864(2):399-430.
    [2] Miethke M, Marahiel MA. Siderophore-based iron acquisition and pathogen control. Microbiology Molecular Biology Review, 2007, 71(3):413-451.
    [3] Randazzo P, Aubert-Frambourg A, Guillot A, Auger S. The MarR-like protein PchR (YvmB) regulates expression of genes involved in pulcherriminic acid biosynthesis and in the initiation of sporulation in Bacillus subtilis. BMC Microbiology, 2016, 16:190.
    [4] Arnaouteli S, Matoz-Fernandez DA, Porter M, Kalamara M, Abbott J, MacPhee CE, Davidson FA, Stanley-Wall NR. Pulcherrimin formation controls growth arrest of the Bacillus subtilis biofilm. PNAS, 2019, 116(27):13553-13562.
    [5] Türkel S, Ener B. Isolation and characterization of new Metschnikowia pulcherrima strains as producers of the antimicrobial pigment pulcherrimin. Zeitschrift Fur Naturforschung Section C-a Journal of Biosciences, 2009, 64:405-410.
    [6] Sipiczki M. Metschnikowia pulcherrima and related pulcherrimin-producing yeasts:fuzzy species boundaries and complex antimicrobial antagonism. Microorganisms, 2020, 8(7):1029.
    [7] Gore-Lloyd D, Sumann I, Brachmann AO, Schneeberger K, Ortiz-Merino RA, Moreno-Beltrán M, Schläfli M, Kirner P, Santos Kron A, Rueda-Mejia MP, Somerville V, Wolfe KH, Piel J, Ahrens CH, Henk D, Freimoser FM. Snf2 controls pulcherriminic acid biosynthesis and antifungal activity of the biocontrol yeast Metschnikowia pulcherrima. Molecular Microbiology, 2019, 112(1):317-332.
    [8] Belin P, Moutiez M, Lautru S, Seguin J, Pernodet JL, Gondry M. The nonribosomal synthesis of diketopiperazines in tRNA-dependent cyclodipeptide synthase pathways. Natural Product Reports, 2012, 29(9):961-979.
    [9] Cryle MJ, Bell SG, Schlichting I. Structural and biochemical characterization of the cytochrome P450 CypX (CYP134A1) from Bacillus subtilis:a cyclo-l-leucyl-l-leucyl dipeptide oxidase. Biochemistry, 2010, 49:7282-7296.
    [10] Wang D, Zhan Y, Cai D, Li X, Wang Q, Chen S. Regulation of the synthesis and secretion of the iron chelator cyclodipeptide pulcherriminic acid in Bacillus licheniformis.Applied and Environmental Microbiology, 2018, 84(13):e00262-18.
    [11] Cairns LS, Martyn JE, Bromley K, Stanley-Wall NR. An alternate route to phosphorylating DegU of Bacillus subtilis using acetyl phosphate. BMC Microbiology, 2015, 15:78.
    [12] Belas R. When the swimming gets tough, the tough form a biofilm. Molecular Microbiology, 2013, 90(1):1-5.
    [13] Tsukahara K, Ogura M. Promoter selectivity of the Bacillus subtilis response regulator DegU, a positive regulator of the fla/che operon and sacB. BMC Microbiology, 2008, 8:8.
    [14] Ohsawa T, Tsukahara K, Ogura M. Bacillus subtilis response regulator DegU is a direct activator of pgsB transcription involved in gamma-poly-glutamic acid synthesis. Bioscience Biotechnology& Biochemistry, 2009, 73(9):2096-2102.
    [15] Gupta M, Rao KK. Phosphorylation of DegU is essential for activation of amyE expression inBacillus subtilis. Journal of Biosciences, 2014, 39(5):747-752.
    [16] Cai D, Zhang B, Rao Y, Li L, Zhu J, Li J, Ma X, Chen S. Improving the utilization rate of soybean meal for efficient production of bacitracin and heterologous proteins in the aprA-deficient strain of Bacillus licheniformis. Applied Microbiology and Biotechnology, 2019, 103:4789-4799.
    [17] Zhu S, Cai D, Liu Z, Zhang B, Li J, Chen S, Ma X. Enhancement of bacitracin production by NADPH generation via overexpressing glucose-6-phosphate dehydrogenase Zwf in Bacillus licheniformis. Applied Biochemistry and Biotechnology, 2019, 187:1502-1514.
    [18] Mordini S, Osera C, Marini S, Scavone F, Bellazzi R, Galizzi A, Calvio C. The role of SwrA, DegU and P (D3) in fla/che expression in Bacillus subtilis. PLoS One, 2013, 8(12):e85065.
    [19] Li X, Wang D, Cai D, Zhan Y, Wang Q, Chen S. Identification and high-level production of pulcherrimin in Bacillus licheniformis DW2. Applied Biochemistry and Biotechnology, 2017, 183(4):1323-1335.
    [20] Wang S, Wang H, Zhang D, Li X, Zhu J, Zhan Y, Cai D, Wang Q, Ma X, Wang D, Chen S. Multistep metabolic engineering of Bacillus licheniformis to improve pulcherriminic acid production. Applied and Environmental Microbiology, 2020, 86(9):e03041-19.
    [21] Rizzi A, Roy S, Bellenger JP, Beauregard PB. Iron homeostasis in Bacillus subtilis requires siderophore production and biofilm formation. Applied and Environmental Microbiology, 2019, 85(3):e02439-18.
    [22] Rizzi A, Leroux J, Charron-Lamoureux V, Roy S, Beauregard PB, Bellenger JP. Bacillus subtilis modulates its usage of biofilm-bound iron in response to environmental iron availability. Applied and Environmental Microbiology, 2020, 86(22):e00944-20.
    [23] Qin Y, He Y, She Q, Larese-Casanova P, Li P, Chai Y. Heterogeneity in respiratory electron transfer and adaptive iron utilization in a bacterial biofilm. Nature Communication. 2019, 10(1):3702.
    [24] Miethke M, Klotz O, Linne U, May JJ, Beckering CL, Marahiel MA. Ferri-bacillibactin uptake and hydrolysis in Bacillus subtilis. Molecular Microbiology, 2006, 61(6):1413-1427.
    [25] Gründlinger M, Gsaller F, Schrettl M, Lindner H, Haas H. Aspergillus fumigatus SidJ mediates intracellular siderophore hydrolysis. Applied and Environmental Microbiology, 2013, 79(23):7534-7536.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王冬,王攀,何轶慧,陈守文. DegU负调控地衣芽胞杆菌普切明酸的合成及分泌[J]. 微生物学报, 2022, 62(8): 3190-3199

复制
分享
文章指标
  • 点击次数:347
  • 下载次数: 748
  • HTML阅读次数: 995
  • 引用次数: 0
历史
  • 收稿日期:2021-12-16
  • 最后修改日期:2022-02-24
  • 在线发布日期: 2022-08-16
文章二维码