浙江某市屠宰场猪链球菌血清型、耐药及致病特征
作者:
基金项目:

国家自然科学基金(31872469);南京农业大学大学生创新训练项目(202117XX02)


Serotypes, antimicrobial resistance, and pathogenic characteristics of Streptococcus suis isolated from a slaughterhouse in an area of Zhejiang Province
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【目的】猪链球菌(Streptococcus suis)是猪的重要病原菌,同时也是人畜共患病原。猪的扁桃体是猪链球菌主要定殖部位之一,是易感猪和人的重要传染源。因此,对屠宰场健康猪进行猪链球菌流行病学调查,具有重要的公共卫生学意义。【方法】本研究自2020年至2021年,从浙江某市屠宰场采集健康猪扁桃体样品,分离鉴定猪链球菌,采用血清型特异性PCR法分型,通过耐药基因检测、药敏试验、斑马鱼毒力实验分析其耐药及致病特征。【结果】131份健康猪扁桃体样品猪链球菌阳性率为62.59%(82/131),共分离猪链球菌68株,其中16型分离率最高,占比16.18%(11/68),其次为31型(11.76%,8/68)、9型(7.35%,5/68)、3型(7.35%,5/68)等。含2种及以上血清型的扁桃体样品占15.85%(13/82)。药敏试验表明,分离株主要对林可酰胺类(100%,68/68)、大环内酯类(98.53%,67/68)、四环素类(100%,68/68)抗生素耐药,所有菌株均属于多药耐药。值得关注的是,有18株菌对青霉素耐药、3株菌对头孢噻肟耐药、2株菌对利福平耐药、11株菌对利奈唑胺耐药。大环内酯类/林可酰胺类耐药基因、四环素类耐药基因检出率均为82.35%(56/68),这是猪链球菌对这些抗生素耐药的主要原因。按不同批次分离的菌株,选择25株代表株进行斑马鱼毒力实验,结果显示:5株菌对斑马鱼致病力强,攻毒剂量为3×106CFU/尾时死亡率为80%–100%。【结论】该地区健康猪不仅猪链球菌携带率高,而且存在多药耐药和致病性强的菌株,这为了解该地区猪链球菌病的发病规律和制定相关的防控策略提供参考。

    Abstract:

    [Objective] Streptococcus suis is a major swine pathogen and a zoonotic agent. Swine tonsil is a natural habitat of S. suis, and the tonsillar S. suis from healthy pigs is considered as an important source of infection for susceptible pigs and humans. Thus, the epidemiological investigation of S. suis from healthy pigs in slaughterhouses is of great significance for public health. [Methods] We collected healthy pigs' tonsils from a slaughterhouse in Zhejiang in 2020-2021, isolated and identified S. suis, and serotyped the strains by the serotype-specific PCR assay. Through the resistance gene detection, antimicrobial susceptibility testing, and zebrafish infection experiment, we examined the antimicrobial resistance and pathogenic characteristics of these isolates. [Results] The positive rate of S. suis in 131 tonsil samples of healthy pigs was 62.59% (82/131), and we isolated a total of 68 strains. The strains were dominated by serotype 16 (16.18%, 11/68), followed by serotype 31 (11.76%, 8/68), serotype 9 (7.35%, 5/68), and serotype 3 (7.35%, 5/68). In addition, tonsil samples containing 2 or more serotypes of S. suis accounted for 15.85% (13/82). The antimicrobial susceptibility testing showed that the isolates were mainly resistant to lincosamides (100%, 68/68), macrolides (98.53%, 67/68), and tetracyclines (100%, 68/68), and all isolates were multidrug-resistant. It is worth noting that 18 isolates were resistant to penicillin, 3 resistant to cefotaxime, 2 resistant to rifampicin, and 11 resistant to linezolid. The detection rate of both macrolides/lincosamides resistance genes and tetracycline resistance genes was 82.35% (56/68), which was the main reason why these isolates were resistant to the above antimicrobials. We selected 25 representative strains for the zebrafish infection experiment, and the results showed that 5 strains were highly virulent with mortality of 80%-100% when challenged with the dose of 3×106 CFU/fish. [Conclusion] Healthy pigs in this area had a high detection rate of S. suis. All isolates were multidrug-resistant, and some were highly virulent. These results contribute to understanding the incidence of S. suis and formulating relevant prevention and control strategies in this area.

    参考文献
    [1] Dutkiewicz J, Zając V, Sroka J, Wasiński B, Cisak E, Sawczyn A, Kloc A, Wójcik-Fatla A. Streptococcus suis:a re-emerging pathogen associated with occupational exposure to pigs or pork products. Part Ⅱ-pathogenesis. Annals of Agricultural and Environmental Medicine, 2018, 25(1):186-203.
    [2] Thongkamkoon P, Kiatyingangsulee T, Gottschalk M. Serotypes of Streptococcus suis isolated from healthy pigs in Phayao Province, Thailand. BMC Research Notes, 2017, 10(1):53.
    [3] Okura M, Osaki M, Nomoto R, Arai S, Osawa R, Sekizaki T, Takamatsu D. Current taxonomical situation of Streptococcus suis. Pathogens, 2016, 5(3):45.
    [4] Pan ZH, Ma JL, Dong WY, Song WC, Wang KC, Lu CP, Yao HC. Novel variant serotype of Streptococcus suis isolated from piglets with meningitis. Applied and Environmental Microbiology, 2015, 81(3):976-985.
    [5] Zheng H, Ji SB, Liu ZJ, Lan RT, Huang Y, Bai XM, Gottschalk M, Xu JG. Eight novel capsular polysaccharide synthesis gene loci identified in nontypeable Streptococcus suis isolates. Applied and Environmental Microbiology, 2015, 81(12):4111-4119.
    [6] Qiu XT, Bai XM, Lan RT, Zheng H, Xu JG. Novel capsular polysaccharide loci and new diagnostic tools for high-throughput capsular gene typing in Streptococcus suis. Applied and Environmental Microbiology, 2016, 82(24):7102-7112.
    [7] Huang JH, Liu X, Chen H, Chen L, Gao XP, Pan ZH, Wang J, Lu CP, Yao HC, Wang LP, Wu ZF. Identification of six novel capsular polysaccharide loci (NCL) from Streptococcus suis multidrug resistant non-typeable strains and the pathogenic characteristic of strains carrying new NCLs. Transboundary and Emerging Diseases, 2019, 66(2):995-1003.
    [8] Bojarska A, Janas K, Pejsak Z, Otulak-Kozieł K, Garbaczewska G, Hryniewicz W, Sadowy E. Diversity of serotypes and newcps loci variants among Streptococcus suis isolates from pigs in Poland and Belarus. Veterinary Microbiology, 2020, 240:108534.
    [9] Wang XM, Sun JJ, Bian C, Wang JP, Liang ZJ, Shen YL, Yao HC, Huang JH, Wang LP, Zheng H, Wu ZF. The population structure, antimicrobial resistance, and pathogenicity of Streptococcus suis cps31. Veterinary Microbiology, 2021, 259:109149.
    [10] Liang PJ, Wang ML, Gottschalk M, Vela AI, Estrada AA, Wang JP, Du PC, Luo M, Zheng H, Wu ZF. Genomic and pathogenic investigations of Streptococcus suis serotype 7 population derived from a human patient and pigs. Emerging Microbes& Infections, 2021, 10(1):1960-1974.
    [11] Huang JH, Ma JL, Shang KX, Hu X, Liang Y, Li DW, Wu ZW, Dai L, Chen L, Wang LP. Evolution and diversity of the antimicrobial resistance associated mobilome in Streptococcus suis:a probable mobile genetic elements reservoir for other streptococci. Frontiers in Cellular and Infection Microbiology, 2016, 6:118.
    [12] 卞晨.江浙地区屠宰场猪链球菌流行病学调查及猪链球菌血清7型病原与耐药特征.南京农业大学学位论文, 2021.
    [13] Matiasovic J, Zouharova M, Nedbalcova K, Kralova N, Matiaskova K, Simek B, Kucharovicova I, Gottschalk M. Resolution of Streptococcus suis serotypes 1/2 versus 2 and 1 versus 14 by PCR-restriction fragment length polymorphism method. Journal of Clinical Microbiology, 2020, 58(7):e00480-e00420.
    [14] Okwumabua O, O'Connor M, Shull E. A polymerase chain reaction (PCR) assay specific for Streptococcus suis based on the gene encoding the glutamate dehydrogenase. FEMS Microbiology Letters, 2003, 218(1):79-84.
    [15] Ishida S, Tien LHT, Osawa R, Tohya M, Nomoto R, Kawamura Y, Takahashi T, Kikuchi N, Kikuchi K, Sekizaki T. Development of an appropriate PCR system for the reclassification of Streptococcus suis. Journal of Microbiological Methods, 2014, 107:66-70.
    [16] Liu ZJ, Zheng H, Gottschalk M, Bai XM, Lan RT, Ji SB, Liu HC, Xu JG. Development of multiplex PCR assays for the identification of the 33 serotypes of Streptococcus suis. PLoS One, 2013, 8(8):e72070.
    [17] 陈浩.猪链球菌新荚膜基因簇(NCL)菌株分离鉴定及NCL4菌株WUSS351基因组分析.南京农业大学学位论文, 2019.
    [18] Martynova AV, Turcutyuicov VB. Macrolide resistance in Streptococcus pneumoniae strains collected in the Far East of Russia from 2000 to 2002. Journal of Clinical Microbiology, 2003, 41(10):4906.
    [19] Palmieri C, Magi G, Mingoia M, Bagnarelli P, Ripa S, Varaldo PE, Facinelli B. Characterization of a Streptococcus suis Tet (O/W/32/O)-carrying element transferable to major streptococcal pathogens. Antimicrobial Agents and Chemotherapy, 2012, 56(9):4697-4702.
    [20] Wu LT, Bao HD, Yang ZQ, He T, Tian Y, Zhou Y, Pang MD, Wang R, Zhang H. Antimicrobial susceptibility, multilocus sequence typing, and virulence of Listeria isolated from a slaughterhouse in Jiangsu, China. BMC Microbiology, 2021, 21(1):327.
    [21] Zhang TR, Niu GY, Boonyayatra S, Pi] Huang JH, Sun JJ, Wu YC, Chen L, Duan D, Lv X, Wang LP. Identification and pathogenicity of an XDR Streptococcus suis isolate that harbours the phenicol-oxazolidinone resistance genes optrA and cfr, and the bacitracin resistance locus bcrABDR. International Journal of Antimicrobial Agents, 2019, 54(1):43-48.
    [40] Petrocchi-Rilo M, Martínez-Martínez S, Aguarón-TurrientesÁ, Roca-Martínez E, García-Iglesias MJ, Pérez-Fernández E, González-Fernández A, Herencia-Lagunar E, Gutiérrez-Martín CB. Anatomical site, typing, virulence gene profiling, antimicrobial susceptibility and resistance genes of Streptococcus suis isolates recovered from pigs in Spain. Antibiotics:Basel, Switzerland, 2021, 10(6):707.
    [41] O'Dea MA, Laird T, Abraham R, Jordan D, Lugsomya K, Fitt L, Gottschalk M, Truswell A, Abraham S. Examination of Australian Streptococcus suis isolates from clinically affected pigs in a global context and the genomic characterisation of ST1 as a predictor of virulence. Veterinary Microbiology, 2018, 226:31-40.
    [42] Varela NP, Gadbois P, Thibault C, Gottschalk M, Dick P, Wilson J. Antimicrobial resistance and prudent drug use for Streptococcus suis. Animal Health Research Reviews, 2013, 14(1):68-77.
    [43] Lee CY, Huang CH, Lu PL, Ko WC, Chen YH, Hsueh PR. Role of rifampin for the treatment of bacterial infections other than mycobacteriosis. Journal of Infection, 2017, 75(5):395-408.
    [44] Chen JY, Fung CP, Chang FY, Huang LY, Chang JC, Siu LK. Mutations of the rpoB gene in rifampicin-resistant Streptococcus pneumoniae in Taiwan. The Journal of Antimicrobial Chemotherapy, 2004, 53(2):375-378.
    [45] Wasteson Y, Høie S, Roberts MC. Characterization of antibiotic resistance in Streptococcus suis. Veterinary Microbiology, 1994, 41(1/2):41-49.tients in Northwest Iran. BMC Infectious Diseases, 2019, 19(1):744.
    [29] Schwarz S, Silley P, Simjee S, Woodford N, Van Duijkeren E, Johnson AP, Gaastra W. Editorial:assessing the antimicrobial susceptibility of bacteria obtained from animals. The Journal of Antimicrobial Chemotherapy, 2010, 65(4):601-604.
    [30] Ngo TH, Tran TBC, Tran TTN, Nguyen VD, Campbell J, Pham HA, Huynh HT, Nguyen VVC, Bryant JE, Tran TH, Farrar J, Schultsz C. Slaughterhouse pigs are a major reservoir of Streptococcus suis serotype 2 capable of causing human infection in southern Vietnam. PLoS One, 2011, 6(3):e17943.
    [31] Dong XX, Chao YJ, Zhou Y, Zhou R, Zhang W, Fischetti VA, Wang XH, Feng Y, Li JQ. The global emergence of a novel Streptococcus suis clade associated with human infections. EMBO Molecular Medicine, 2021, 13(7):e13810.
    [32] 沈艳玲.猪链球菌血清31型致病与耐药特征.南京农业大学学位论文, 2020.
    [33] 陆亚男,王晓旭,徐锋,沈莉萍,朱九超,王建.上海地区种猪场健康猪群猪链球菌监测及血清分型研究.上海畜牧兽医通讯, 2021(3):34-38. Lu YN, Wang XX, Xu F, Shen LP, Zhu JC, Wang J. Shanghai Journal of Animal Husbandry and Veterinary Medicine, 2021(3):34-38.(in Chinese)
    [34] Dechêne-Tempier M, Marois-Créhan C, Libante V, Jouy E, Leblond-Bourget N, Payot S. Update on the mechanisms of antibiotic resistance and the mobile resistome in the emerging zoonotic pathogen Streptococcus suis. Microorganisms, 2021, 9(8):1765.
    [35] Palmieri C, Varaldo PE, Facinelli B. Streptococcus suis, an emerging drug-resistant animal and human pathogen. Frontiers in Microbiology, 2011, 2:235.
    [36] Munita JM, Arias CA. Mechanisms of antibiotic resistance. Microbiology Spectrum, 2016, 4(2):DOI:10.1128/microbiolspec.VMBF-0016-2015.
    [37] Sadowy E. Linezolid resistance genes and genetic elements enhancing their dissemination in enterococci and streptococci. Plasmid, 2018, 99:89-98.
    [38] Huang JH, Chen L, Wu ZW, Wang LP. Retrospective analysis of genome sequences revealed the wide dissemination of optrA in Gram-positive bacteria. The Journal of Antimicrobial Chemotherapy, 2017, 72(2):614-616.
    [39
    相似文献
    引证文献
引用本文

刘召颖,朱夏雨,牛洪颖,万欣,吴宗福. 浙江某市屠宰场猪链球菌血清型、耐药及致病特征[J]. 微生物学报, 2022, 62(8): 3236-3250

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-12-23
  • 最后修改日期:2022-02-08
  • 在线发布日期: 2022-08-16
文章二维码