谷氨酸棒杆菌anti-σ因子CseE及其突变体与σ因子SigE的相互作用分析
作者:
基金项目:

国家自然科学基金(32070035);国家重点研发计划(2021YFC2100900);宁夏回族自治区重点研究开发计划(2019BCH01002)


Interaction of anti-σ factor CseE and its mutants with σ factor SigE from Corynebacterium glutamicum
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的]谷氨酸棒杆菌是重要的氨基酸生产菌株,本研究针对SigE与ZAS家族蛋白CseE相互作用机制进行探索研究,重点分析CseE突变体影响与SigE结合能力的机制。[方法]本研究选择谷氨酸棒杆菌ATCC 13032来源的SigE和CseE蛋白为研究目标,利用遗传学方法获得过表达的重组谷氨酸棒杆菌,通过RT-qPCR研究SigE调控sigEcseE的转录情况。同时,利用ITC和His pull-down实验验证ZAS家族的CseE蛋白与Zn2+及SigE的结合情况。之后对CseE蛋白进行功能域分析、多序列比对,研究功能域关键氨基酸位点对SigE结合能力的影响。其次对SigE和CseE蛋白进行分子对接和动力学模拟,分析关键氨基酸影响其结合的机制。[结果]谷氨酸棒杆菌SigE调控基因sigEcseE的转录并且其活性受CseE蛋白控制。CseE蛋白为ZAS家族蛋白,具有Zn2+结合能力。CseEHis83A、CseEcys87A和CseEcys90A突变体不会影响与SigE的结合能力,而CseEC87A-C90A和CseEHis83A-C87A-C90A突变体与SigE的结合能力略有下降。分子动力学模拟发现SigE-CseEC87A-C90A和SigE-CseEHis83A-C87A-C90A之间的结合能量为-17.23 kcal/mol和-14.06 kcal/mol,分别比未突变体系结合能量降低22.8%及36.9%。[结论]谷氨酸棒杆菌SigE通过聚集RNA聚合酶来调控基因sigEcseE的表达。CseE蛋白属于ZAS家族,具有Zn2+结合能力同时通过与SigE蛋白互作来抑制SigE活性。CseEC87A-C90A及CseEHis83A-C87A-C90A突变体能影响与SigE结合的能力,减弱对SigE活性的控制。本研究产生的三维结构和确定的氨基酸关键位点为后续探索谷氨酸棒杆菌SigE和CseE响应环境压力机制提供了理论基础。

    Abstract:

    [Objective] Corynebacterium glutamicum is an important amino acid producer.In this study,we explored the mechanisms of interaction between SigE and ZAS family protein CseE,particularly the interaction between CseE mutants and SigE.[Methods] SigE and CseE proteins from C.glutamicum ATCC 13032 were used.The sigE-overexpressing and cseE-overexpressing strains were developed with the genetics method.Through RT-qPCR,we explored the influence of SigE on the transcription of sigE and cseE.At the same time,we tested the binding of CseE proteins to Zn2+ and SigE through isothermal titration calorimetry (ITC) and His pull-down experiments,followed by functional domain analysis and multiple sequence alignment of CseE protein to study the effect of key amino acid sites in the domain on the binding ability of SigE.Then,we conducted molecular docking and molecular dynamic simulation of SigE and CseE proteins to analyze the mechanisms of key amino acids affecting their binding.[Results] SigE of ATCC 13032 regulated the transcription of sigE and cseE and its activity was regulated by the CseE protein.CseE,a ZAS family protein,bound to Zn2+.CseEHis83A,CseECys87A,and CseECys90A mutantsdid not affect the binding ability to SigE,while the binding ability of CseEC87A-C90A and CseEHis83A-C87A-C90A mutants to SigE decreased slightly.Molecular dynamic simulation showed that the SigE-CseEC87A-C90A binding energy and SigE-CseEHis83-C87A-C90A binding energy were -17.23 kcal/mol and -14.06 kcal/mol,respectively,22.8% and 36.9% lower than the binding energy between SigE and CseE,respectively.[Conclusion]SigE regulates the expression of sigE and cseE by aggregating RNA polymerase,and its protein activity is regulated by CseE.CseE protein belongs to the ZAS family,which binds to Zn2+ and inhibits SigE activity by interacting with SigE protein.CseEC87A-C90A and CseEHis83A-C87A-C90A affect the ability to bind to SigE and weaken the control of SigE activity.The three-dimensional structures and the identified key amino acid sites in this study lay a theoretical basis for further exploring the mechanism of SigE and CseE in C.glutamicum in response to environmental stresses.

    参考文献
    [1] Li L, Fang C, Zhuang N, Wang T, Zhang Y. Structural basis for transcription initiation by bacterial ECFσ factors. Nature Communications, 2019, 10:1153.
    [2] Boldrin F, Cioetto Mazzabò L, Anoosheh S, Palù G, Gaudreau L, Manganelli R, Provvedi R. Assessing the role of Rv1222(RseA) as an anti-sigma factor of the Mycobacterium tuberculosis extracytoplasmic sigma factor SigE. Scientific Reports, 2019, 9:4513.
    [3] Park JH, Lee JH, Roe JH. SigR, a hub of multilayered regulation of redox and antibiotic stress responses. Molecular Microbiology, 2019, 112(2):420-431.
    [4] Wei Z, Chen C, Liu YJ, Dong S, Li J, Qi K, Liu SY, Ding XK, Ortiz De Ora L, Muñoz-Gutiérrez I, Li YF, Yao HW, Lamed R, Bayer EA, Cui Q, Feng YG. AlternativeσI/anti-σI factors represent a unique form of bacterialσ/anti-σ complex. Nucleic Acids Research, 2019, 47(11):5988-5997.
    [5] Iyer SC, Casas-Pastor D, Kraus D, Mann P, Schirner K, Glatter T, Fritz G, Ringgaard S. Transcriptional regulation byσ factor phosphorylation in bacteria. Nature Microbiology, 2020, 5(3):395-406.
    [6] Paget MS. Bacterial sigma factors and anti-sigma factors structure, function and distribution. Biomolecules, 2015, 5(3):1245-1265.
    [7] Lee KL, Yoo JS, Oh GS, Singh AK, Roe JH. Simultaneous activation of iron-and thiol-based sensor-regulator systems by redox-active compounds. Frontiers in Microbiology, 2017, 8:139.
    [8] Rajasekar KV, Zdanowski K, Yan J, Hopper JTS, Francis MLR, Seepersad C, Sharp C, Pecqueur L, Werner JM, Robinson CV, Mohammed S, Potts JR, Kleanthous C. The anti-sigma factor RsrA responds to oxidative stress by reburying its hydrophobic core. Nature Communications, 2016, 7:12194.
    [9] Devkota SR, Kwon E, Ha SC, Chang HW, Kim DY. Structural insights into the regulation of Bacillus subtilis SigW activity by anti-Sigma RsiW. PLoS One, 2017, 12(3):e0174284.
    [10] Dostálová H, Holátko J, Busche T, Rucká L, Rapoport A, Halada P, Nešvera J, Kalinowski J, Pátek M. Assignment of sigma factors of RNA polymerase to promoters in Corynebacterium glutamicum. AMB Express, 2017, 7(1):133.
    [11] Toyoda K, Teramoto H, Yukawa H, Inui M. Expanding the regulatory network governed by the extracytoplasmic function sigma factorσH in Corynebacterium glutamicum. Journal of Bacteriology, 2015, 197(3):483-496.
    [12] Park SD, Youn JW, Kim YJ, Lee SM, Kim Y, Lee HS. Corynebacterium glutamicum sigmaE is involved in responses to cell surface stresses and its activity is controlled by the anti-sigma factor CseE. Microbiology:Reading, England, 2008, 154(Pt3):915-923.
    [13] Toyoda K, Inui M. Extracytoplasmic function sigma factorσD confers resistance to environmental stress by enhancing mycolate synthesis and modifying peptidoglycan structures in Corynebacterium glutamicum. Molecular Microbiology, 2018, 107(3):312-329.
    [14] Silberbach M, Hüser A, Kalinowski J, Pühler A, Walter B, Krämer R, Burkovski A. DNA microarray analysis of the nitrogen starvation response of Corynebacterium glutamicum. Journal of Biotechnology, 2005, 119(4):357-367.
    [15] Brockmann-Gretza O, Kalinowski J. Global gene expression during stringent response in Corynebacterium glutamicum in presence and absence of the rel gene encoding (p) ppGpp synthase. BMC Genomics, 2006, 7:230.
    [16] Jakob K, Satorhelyi P, Lange C, Wendisch VF, Silakowski B, Scherer S, Neuhaus K. Gene expression analysis of Corynebacterium glutamicum subjected to long-term lactic acid adaptation. Journal of Bacteriology, 2007, 189(15):5582-5590.
    [17] Dostálová H, Busche T, Holátko J, Rucká L,Štěpánek V, Barvík I, Nešvera J, Kalinowski J, Pátek M. Overlap of promoter recognition specificity of stress response sigma factors SigD and SigH in Corynebacterium glutamicum ATCC 13032. Frontiers in Microbiology, 2019, 9:3287.
    [18] Yakhnin H, Aichele R, Ades SE, Romeo T, Babitzke P. Circuitry linking the global csr-andσ E-dependent cell envelope stress response systems. Journal of Bacteriology, 2017, 199(23):e00484-17.
    [19] Wang Q, Jiang A, Tang JB, Gao H, Zhang X, Yang TW, Xu ZH, Xu MJ, Rao ZM. Enhanced production of l-arginine by improving carbamoyl phosphate supply in metabolically engineered Corynebacterium crenatum. Applied Microbiology and Biotechnology, 2021, 105(8):3265-3276.
    [20] 唐蜜,王晴,杨套伟,张显,徐美娟,饶志明.钝齿棒杆菌GlnK在氮代谢调控及l-精氨酸合成中的功能.微生物学报, 2020, 60(10):2323-2340. Tang M, Wang Q, Yang TW, Zhang X, Xu MJ, Rao ZM. Role of GlnK in regulating nitrogen metabolism and l-arginine synthesis in Corynebacterium crenatum. Acta Microbiologica Sinica, 2020, 60(10):2323-2340.(in Chinese)
    [21] Rodriguez Ayala F, Bartolini M, Grau R. The stress-responsive alternative sigma factor SigB of Bacillus subtilis and its relatives:an old friend with new functions. Frontiers in Microbiology, 2020, 11:1761.
    [22] Srivastava A, Summers ML, Sobotka R. Cyanobacterial sigma factors:current and future applications for biotechnological advances. Biotechnology Advances, 2020, 40:107517.
    [23] Nakamura K, Shinoda N, Hiramatsu Y, Ohnishi S, Kamitani S, Ogura Y, Hayashi T, Horiguchi Y. BspR/BtrA, an anti-σ factor, regulates the ability of Bordetella bronchiseptica to cause cough in rats. mSphere, 2019, 4(2):e00093-19.
    [24] Toyoda K, Inui M. The extracytoplasmic functionσ factorσC regulates expression of a branched quinol oxidation pathway in Corynebacterium glutamicum. Molecular Microbiology, 2016, 100(3):486-509.
    [25] Zorzan I, Del Favero S, Giaretta A, Manganelli R, Di Camillo B, Schenato L. Mathematical modelling of SigE regulatory network reveals new insights into bistability of mycobacterial stress response. BMC Bioinformatics, 2021, 22(1):558.
    [26] Chabert V, Lebrun V, Lebrun C, Latour JM, Sénèque O. Model peptide for anti-sigma factor domain HHCC zinc fingers:high reactivity toward 1 O2 leads to domain unfolding. Chemical Science, 2019, 10(12):3608-3615.
    [27] Imber M, Pietrzyk-Brzezinska AJ, Antelmann H. Redox regulation by reversible protein S-thiolation in Gram-positive bacteria. Redox Biology, 2019, 20:130-145.
    [28] Schumacher MA, Gallagher KA, Holmes NA, Chandra G, Henderson M, Kysela DT, Brennan RG, Buttner MJ. Evolution of aσ-(c-di-GMP)-anti-σ switch. PNAS, 2021, 118(30):e2105447118.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

上官春雨,徐美娟,夏博雅,杨套伟,张显,饶志明. 谷氨酸棒杆菌anti-σ因子CseE及其突变体与σ因子SigE的相互作用分析[J]. 微生物学报, 2022, 62(9): 3542-3557

复制
分享
文章指标
  • 点击次数:274
  • 下载次数: 1174
  • HTML阅读次数: 1035
  • 引用次数: 0
历史
  • 收稿日期:2022-01-24
  • 最后修改日期:2022-02-18
  • 在线发布日期: 2022-09-05
文章二维码