白刺花根瘤菌与非根瘤菌在不同培养条件下互作模式的转变
作者:
基金项目:

国家自然科学基金(32160003);2021年延安大学校级大学生创新创业训练计划(D2021116)


Transformation of the interaction pattern between rhizobia and non-rhizobia of Sophora davidii under different culture conditions
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的]除根瘤菌外,豆科植物根瘤中还存在着大量的非根瘤菌,它们存在的意义及其潜在的生态学功能还不清楚,尤其是它们与根瘤菌间的互作机制更需揭示。[方法]以从陕北旱区野生白刺花根瘤中分离得到的根瘤菌和非根瘤菌为研究对象,采用共培养、二分隔平板实验和单独培养的方法,于正常培养条件下从白刺花根瘤中筛选出有互作效应的菌株,测定其对pH和NaCl的耐受性以及对各种氮源的利用情况,并通过根瘤菌的菌落直径、生长曲线和多糖产量来表征其互作效应,进一步探明互作菌株在盐碱和营养胁迫条件下互作效应转变的机制。[结果]在盐碱胁迫下,非根瘤菌Pseudomonas oryzihabitans BT-147和Priestia aryabhattai BT-59对Rhizobium azibense BT-170互作效果由正常培养条件下的抑制转变为促生,与对照组相比试验组R. azibense BT-170菌落直径分别增加了0.803 mm和1.034 mm。Bacillus siamensis BT-9-1在正常培养条件下抑制Mesorhizobium metallidurans YC-39的生长,而在盐碱胁迫下表现为促生作用,与对照组相比试验组M. metallidurans YC-39菌落直径增加了1.019 mm,多糖产量由1.088 µg/mL增加到2.555 µg/mL。在以谷氨酸作为唯一氮源时,Pseudomonas oryzihabitans BT-147和Priestia aryabhattai BT-59对R. azibense BT-170的互作效果转变为促生作用,R. azibense BT-170试验组与对照组菌落直径差分别达到1.348 mm和2.196 mm,其多糖产量从对照组的0.559 µg/mL分别增加到0.821 µg/mL和3.341 µg/mL。[结论]在盐碱和氮源的胁迫下,非根瘤菌Pseudomonas oryzihabitans BT-147和Priestia aryabhattai BT-59对R. azibense BT-170互作效果由正常培养条件下的抑制转变为促生,并显著提高了R. azibense BT-170多糖的产量(P<0.05),不同培养条件下根瘤菌与非根瘤菌互作模式的转变,提高了根瘤菌的抗逆性,扩大了根瘤菌可利用氮源的范围,揭示了非根瘤菌在根瘤微生态中所发挥的作用,并从体外简化了根瘤微生态中复杂的相互作用。

    Abstract:

    [Objective]In addition to rhizobia,non-rhizobia have been simultaneously isolated from the same root nodules,and the existence of non-rhizobia in root nodules of Fabaceae plants was a universal phenomenon.Their colonization meaning and potential ecological functions have been unknown so far.Moreover,the real relationships between rhizobia and non-rhizobia remain unclear.Therefore,the interactions and mechanism of their co-evolution should be investigated intensively and further studied.This paper was designed to reveal the interactions between rhizobia and non-rhizobia in root nodule microbiome of Sophora davidii and to further explore the shift in the interaction pattern between them under different culture conditions.[Methods] The rhizobia and non-rhizobia isolated from the root nodules of wild Sophora davidii in arid areas of Northern Shaanxi Province was taken as the subjects.The interacting strains were screened based on co-culture,two-compartment culture and pure culture,and were investigated for the tolerance to pH and NaCl and the utilization of various nitrogen sources.The colony diameter,growth curve and polysaccharide production of the rhizobia were used to evaluate the interaction effects,so as to further explore the transformation mechanism underlying the interaction effects of strains under saline-alkali and nutritional stresses.[Results] Under saline-alkali stress,the interaction effects of the non-rhizobia Pseudomonas oryzihabitans BT-147 and Priestia aryabhattai BT-59 on Rhizobium azibense BT-170 changed from inhibition under normal culture conditions to promotion.The colony diameter of R.azibense BT-170 increased by 0.803 mm and 1.034 mm,respectively in test groups as compared with the condition in control group.When Bacillus siamensis BT-9-1was co-cultured with Mesorhizobium metallidurans YC-39 under saline-alkali stress,the interaction pattern changed to promotion from inhibition under normal culture conditions.Compared with control group,the test group had increased colony diameter of M.metallidurans YC-39 by 1.019 mm,and the exopolysaccharide production rose from 1.088 μg/mL to 2.555µg/mL.When Glutamic acid was used as the only nitrogen source,the non-rhizobia Pseudomonas oryzihabitans BT-147 and Priestia aryabhattai BT-59 had promotion effects on R.azibense BT-170,and the difference in colony diameter of R.azibense BT-170 between test group and control group reached 1.348 mm and 2.196 mm,respectively.The exopolysaccharides yield of R.azibense BT-170 increased from 0.559 μg/mL in control group to 0.821 μg/mL and 3.341µg/mL,respectively.[Conclusion] Under saline-alkali and nitrogen source stresses,the interaction effects of the non-rhizobia Pseudomonas oryzihabitans BT-147 and Priestia aryabhattai BT-59 on R.azibense BT-170 changed to promotion from inhibition under normal culture conditions and enhanced the exopolysaccharides production of R. azibense BT-170(P<0.05).The shift in the interaction pattern between rhizobia and non-rhizobia under different culture conditions improved the stress resistance of rhizobia and expanded the range of nitrogen sources available to rhizobia,revealing the role of non-rhizobia in root nodule microbiome and simplifying the complex interactions in root nodule microbiome in vitro.

    参考文献
    [1] 伍惠,钟喆栋,王学路,陈大松,李友国.与黑龙江大豆主栽品种匹配的优良根瘤菌筛选与鉴定.应用与环境生物学报, 2018, 24(1):39-46. Wu H, Zhong ZD, Wang XL, Chen DS, Li YG. Screening and identification of elite rhizobia matched with main cultivars of soybean in Heilongjiang Province. Chinese Journal of Applied and Environmental Biology, 2018, 24(1):39-46.(in Chinese)
    [2] 胡倡,李慧明,伍惠,林会,李友国.解磷菌和根瘤菌复合接种对大豆和紫云英共生固氮的影响.华中农业大学学报, 2020, 39(4):38-45. Hu C, Li HM, Wu H, Lin H, Li YG. Effects of co-inoculation of phosphate-solubilizing bacteria and Rhizobium on symbiotic nitrogen fixation of soybean and Astragalus sinensis. Journal of Huazhong Agricultural University, 2020, 39(4):38-45.(in Chinese)
    [3] De Meyer SE, De Beuf K, Vekeman B, Willems A. A large diversity of non-rhizobial endophytes found in legume root nodules in Flanders (Belgium). Soil Biology and Biochemistry, 2015, 83:1-11.
    [4] Ibáñez F, Angelini J, Taurian T, Tonelli ML, Fabra A. Endophytic occupation of peanut root nodules by opportunistic Gammaproteobacteria. Systematic and Applied Microbiology, 2009, 32(1):49-55.
    [5] Tariq M, Hameed S, Yasmeen T, Zahid M, Zafar M. Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.). World Journal of Microbiology & Biotechnology, 2014, 30(2):719-725.
    [6] Vessey JK. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 2003, 255(2):571-586.
    [7] Fierer N. Embracing the unknown:disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 2017, 15(10):579-590.
    [8] Abreu NA, Taga ME. Decoding molecular interactions in microbial communities. FEMS Microbiology Reviews, 2016, 40(5):648-663.
    [9] Blasche S, Kim Y, Oliveira AP, Patil KR. Model microbial communities for ecosystems biology. Current Opinion in Systems Biology, 2017, 6:51-57.
    [10] Bertrand S, Bohni N, Schnee S, Schumpp O, Gindro K, Wolfender JL. Metabolite induction via microorganism co-culture:a potential way to enhance chemical diversity for drug discovery. Biotechnology Advances, 2014, 32(6):1180-1204.
    [11] Moree WJ, Yang JY, Zhao XL, Liu WT, Aparicio M, Atencio L, Ballesteros J, Sánchez J, Gavilán RG, Gutiérrez M, Dorrestein PC. Imaging mass spectrometry of a coral microbe interaction with fungi. Journal of Chemical Ecology, 2013, 39(7):1045-1054.
    [12] Cui LJ, Morris A, Ghedin E. The human mycobiome in health and disease. Genome Medicine, 2013, 5(7):63.
    [13] Wu C, Zacchetti B, Ram AFJ, Van Wezel GP, Claessen D, Hae Choi Y. Expanding the chemical space for natural products by Aspergillus-Streptomyces co-cultivation and biotransformation. Scientific Reports, 2015, 5:10868.
    [14] Traxler MF, Watrous JD, Alexandrov T, Dorrestein PC, Kolter R. Inter species interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome. mBio, 2013, 4(4):e00459-e00413.
    [15] Westhoff S, Van Wezel GP, Rozen DE. Distance-dependent danger responses in bacteria. Current Opinion in Microbiology, 2017, 36:95-101.
    [16] Jones SE, Ho L, Rees CA, Hill JE, Nodwell JR, Elliot MA. Streptomyces exploration is triggered by fungal interactions and volatile signals. eLife, 2017, 6:e21738.
    [17] Schulz S, Dickschat JS. Bacterial volatiles:the smell of small organisms. Natural Product Reports, 2007, 24(4):814-842.
    [18] McCully LM, Bitzer AS, Seaton SC, Smith LM, Silby MW. Inter species social spreading:interaction between two sessile soil bacteria leads to emergence of surface motility. mSphere, 2019, 4(1):e00696-18.
    [19] Tisch D, Schmoll M. Light regulation of metabolic pathways in fungi. Applied Microbiology and Biotechnology, 2010, 85(5):1259-1277.
    [20] Geetha Thanuja K, Annadurai B, Thankappan S, Uthandi S. Non-rhizobial endophytic (NRE) yeasts assist nodulation of Rhizobium in root nodules of blackgram (Vigna mungo L.). Archives of Microbiology, 2020, 202(10):2739-2749.
    [21] Worsley SF, Innocent TM, Holmes NA, Al-Bassam MM, Schiøtt M, Wilkinson B, Murrell JC, Boomsma JJ, Yu DW, Hutchings MI. Competition-based screening helps to secure the evolutionary stability of a defensive microbiome. BMC Biology, 2021, 19(1):205.
    [22] Briard B, Heddergott C, Latgé JP. Volatile compounds emitted by Pseudomonas aeruginosa stimulate growth of the fungal pathogen Aspergillus fumigatus. mBio, 2016, 7(2):e00219.
    [23] Cordovez V, Carrion VJ, Etalo DW, Mumm R, Zhu H, Van Wezel GP, Raaijmakers JM. Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil. Frontiers in Microbiology, 2015, 6:1081.
    [24] Oh DC, Kauffman CA, Jensen PR, Fenical W. Induced production of emericellamides A and B from the marine-derived fungus Emericella sp. in competing co-culture. Journal of Natural Prodnd bio-assay. Microbiology China, 2020, 47(2):552-561.(in Chinese)
    [42] Nguyen QT, Merlo ME, Medema MH, Jankevics A, Breitling R, Takano E. Metabolomics methods for the synthetic biology of secondary metabolism. FEBS Letters, 2012, 586(15):2177-2183.73-985.
    [26] 刘杰,汪恩涛,陈文新.豆科植物根瘤内生细菌的发现及其研究进展.微生物学报, 2011, 51(8):1001-1006. Liu J, Wang ET, Chen WX. Discovery and research progress of endophytic bacteria in the root nodules of legumes-a review. Acta Microbiologica Sinica, 2011, 51(8):1001-1006.(in Chinese)
    [27] 张晓霞,马晓彤,姜瑞波.根瘤菌分类研究进展及存在的争议.微生物学通报, 2010, 37(4):601-606. Zhang XX, Ma XT, Jiang RB. Taxonomy of rhizobia:progress and disputation. Microbiology China, 2010, 37(4):601-606.(in Chinese)
    [28] 王志伟,陈永敢,王庆璨,纪燕玲.中国植物内生微生物研究的发展和展望.微生物学通报, 2014, 41(3):482-496. Wang ZW, Chen YG, Wang QC, Ji YL. Progresses and perspectives of studies on plant endophytic microbes in China. Microbiology China, 2014, 41(3):482-496.(in Chinese)
    [29] Song CJ, Ma KM, Fu BJ, Qu LY, Xu XL, Liu Y, Zhong JF. Distribution patterns of shrubby N-fixers and non-N fixers in an arid valley in Southwest China:implications for ecological restoration. Ecological Research, 2010, 25(3):553-564.
    [30] 高亚慧,姜明国,丰景,周桂.基于产生促生挥发性物质的潜在PGPR菌株筛选及其促生特性研究.生物技术通报, 2022, 38(3):103-112. GAO YH, JIANG MG, FENG J, ZHOU G. Screening of potential PGPR strains based on the production of growth-promoting volatile compounds and study on their growthpromoting characteristics. Biotechnology Bulletin, 2022, 38(3):103-112.(in Chinese)
    [31] Zhang B, Sun BS, Jin M, Gong TS, Gao ZH. Extraction and analysis of extracellular polymeric substances in membrane fouling in submerged MBR. Desalination, 2008, 227(1/2/3):286-294.
    [32] 王路瑶,汤斌.根瘤菌胞外多糖的分离纯化及组分分析.食品与发酵工业, 2019, 45(11):71-77. Wang LY, Tang B. Isolation, purification and component analysis of extracellular polysaccharides from Rhizobium. Food and Fermentation Industries, 2019, 45(11):71-77.(in Chinese)
    [33] Zhao LF, Xu YJ, Ma ZQ, Deng ZS, Shan CJ, Wei GH. Colonization and plant growth promoting characterization of endophytic Pseudomonas chlororaphis strain Zong1 isolated from Sophora alopecuroides root nodules. Brazilian Journal of Microbiology:[Publication of the Brazilian Society for Microbiology], 2013, 44(2):623-631.
    [34] Andrews M, Hodge S, Raven JA. Positive plant microbial interactions. Annals of Applied Biology, 2010, 157(3):317-320.
    [35] Rajendran G, Sing F, Desai AJ, Archana G. Enhanced growth and nodulation of pigeon pea by co-inoculation of Bacillus strains with Rhizobium spp.. Bioresource Technology, 2008, 99(11):4544-4550.
    [36] Han Q, Ma Q, Chen Y, Tian B, Xu L, Bai Y, Chen W, Li X. Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean. The ISME Journal, 2020, 14(8):1915-1928.
    [37] Acosta-Jurado S, Fuentes-Romero F, Ruiz-Sainz JE, Janczarek M, Vinardell JM. Rhizobial exopolysaccharides:genetic regulation of their synthesis and relevance in symbiosis with legumes. International Journal of Molecular Sciences, 2021, 22(12):6233.
    [38] 赵龙飞,徐亚军.根瘤菌胞外多糖的结构与功能研究进展.中国酿造, 2008, 27(24):18-20. Zhao LF, Xu YJ. The research progress of rhizobia exopolysaccharides'structure and function. China Brewing, 2008, 27(24):18-20.(in Chinese)
    [39] 李友国,周俊初.影响根瘤菌共生固氮效率的主要因素及遗传改造.微生物学通报, 2002, 29(6):86-89. Li YG, Zhou JC. Major factors affecting the efficiency of symbiotic nitrogen fixation by rhizobia and genetic modification. Microbiology China, 2002, 29(6):86-89.(in Chinese)
    [40] Cornforth DM, Foster KR. Competition sensing:the social side of bacterial stress responses. Nature Reviews Microbiology, 2013, 11(4):285-293.
    [41] 郭玉华,舒雪纯,张影波,官玲亮,于福来,元超.基于超高效液相色谱-电喷雾-质谱、天然产物词典和活性筛选的艾纳香内生真菌次生代谢产物.微生物学通报, 2020, 47(2):552-561. Guo YH, Shu XC, Zhang YB, Guan LL, Yu FL, Yuan C. Screening of bioactive secondary metabolites of endophytes associated with Blumea balsamifera(L.) DC. by UPLC-QTof-MS, DNP a
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

艾加敏,李静,任明霞,余天飞,郑超超,柳晓东,姜影影,赵瑞华,邓振山. 白刺花根瘤菌与非根瘤菌在不同培养条件下互作模式的转变[J]. 微生物学报, 2022, 62(9): 3558-3575

复制
分享
文章指标
  • 点击次数:397
  • 下载次数: 741
  • HTML阅读次数: 873
  • 引用次数: 0
历史
  • 收稿日期:2022-01-24
  • 最后修改日期:2022-03-05
  • 在线发布日期: 2022-09-05
文章二维码