水杨酸诱导下蝙蝠蛾拟青霉转录组分析及虫草酸代谢途径关键酶基因挖掘
作者:
基金项目:

国家自然科学基金(31571795);浙江农林大学科研发展基金(2016FR010)


Transcriptome analysis of Samsoniella hepialiinduced by salicylic acid and crucial genes digging for metabolic pathways of cordycepic acid
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】虫草酸是虫草中重要的活性成分之一,但其低含量极大地限制了其工业应用。水杨酸(salicylic acid, SA)是一种非生物诱导子,可以显著提高蝙蝠蛾拟青霉中虫草酸的合成,但蝙蝠蛾拟青霉虫草酸代谢途径及其对水杨酸的响应尚不明确。本研究旨在获得蝙蝠蛾拟青霉响应SA处理的转录组学信息,挖掘蝙蝠蛾拟青霉中虫草酸代谢途径关键酶基因。【方法】采用SA诱导培养蝙蝠蛾拟青霉,8 h后选取诱导和未诱导的菌丝进行转录组高通量测序分析。【结果】测序最终获得40.37 Gb的clean data,拼接得到20 317条unigene,平均长度为1 357.13 bp,功能注释共获得13 592条unigene。差异基因分析共筛选出差异基因2 574个,其中有1 135个上调,1 439个下调。KEGG富集分析表明,差异基因主要富集于细胞周期、减数分裂、半乳糖代谢、DNA复制、糖醇脂类生物合成、甘油脂类代谢等KEGG通路中。进一步分析得到与虫草酸代谢相关的基因13条,其中参与虫草酸生物合成的基因glkgpiglampifbpmtld在SA处理后表达量上调,而涉及虫草酸消耗的基因mdh在SA处理后表达量下调,qRT-PCR验证结果与RNA-Seq数据基本一致。【结论】对SA诱导后的蝙蝠蛾拟青霉转录组进行分析,获得虫草酸代谢途径相关的候选基因,SA能够提高虫草酸合成相关基因表达的同时抑制消耗虫草酸的基因表达,从而提高虫草酸生物合成量。本研究为SA调控蝙蝠拟青霉虫草酸生物合成途径相关基因研究提供了依据,也为后期开展虫草酸代谢调控机制研究奠定了基础。

    Abstract:

    [Objective]Cordycepic acid is one of the most important active substances in Samsoniella hepiali,but the low content greatly restricts its industrial application.Salicylic acid (SA) is an abiotic inducer,and we found that it could increase the content of cordycepic acid in S.hepiali.However,the metabolic pathways of cordycepic acid and its response to SA are not clear.This study was designed to obtain the transcriptome information of S.hepiali in response to SA treatment,and to explore key enzyme genes for the metabolic pathways of cordycepic acid.[Methods] In this study,SA was used to induce S.hepiali,and after 8 h treatment,high-throughput transcriptome sequencing was performed on induced and uninduced mycelia.[Results] A total of 40.37 Gb clean data was acquired,and 20 317 unigenes with an average length of 1 357.13 bp were constructed.Additionally,13 592 unigenes were annotated in the public databases NR,NT,KEGG,Swissprot,GO,and Pfam,and 2 574 differentially expressed genes were identified,in which 1 135 were up-regulated and 1 439 were down-regulated.KEGG enrichment analysis demonstrated that the differentially expressed genes were concentrated in the pathways such as cell cycle,meiosis,galactose metabolism,DNA replication,glycolipid biosynthesis,and glyceride metabolism.Furthermore,13 unigenes involved in metabolic pathways of cordycepic acid were found based on the assignment of KEGG pathway.The expression of genes glk,gpi,gla,mpi,fbp and mtld related to cordycepic acid biosynthesis was all up-regulated after the induction of SA,yet that of the gene mdh involved in cordycepic acid consumption was down-regulated,and the qRT-PCR results were in substantial agreement with RNA-Seq data.[Conclusion] Transcriptome information of S.hepiali induced by SA was obtained,and candidate genes for the metabolic pathways of cordycepic acid were identified.SA improved the expression of the biosynthetic genes and inhibited the gene transcription related to cordycepsic acid consumption,thus increasing the accumulation of cordycepic acid.This study provides reference for regulating the genes related to the biosynthetic pathways of cordycepic acid in S.hepiali by SA,and also facilitates the investigation on the regulatory mechanism of cordycepic acid metabolism.

    参考文献
    [1] 洪志来,王文宣,熊娟,陈建,喻立平,杨国勋,胡金锋.蝙蝠蛾拟青霉菌发酵菌丝体的化学成分研究.中草药, 2013, 44(8):947-950. Hong ZL, Wang WX, Xiong J, Chen J, Yu LP, Yang GX, Hu JF. Chemical constituents from fermented mycelium of Paecilomyces hepiali. Chinese Traditional and Herbal Drugs, 2013, 44(8):947-950.(in Chinese)
    [2] 戴如琴,李晓明,邵爱娟,林淑芳,兰江丽,陈伟华,沈崇尧.蝙蝠蛾拟青霉名称的合格化.菌物学报, 2008, 27(5):641-644. Dai RQ, Li XM, Shao AJ, Lin SF, Lan JL, Chen WH, Shen CY. Nomenclatural validation of Paecilomyces hepiali. Mycosystema, 2008, 27(5):641-644.(in Chinese)
    [3] Wang YB, Wang Y, Fan Q, Duan DE, Zhang GD, Dai RQ, Dai YD, Zeng WB, Chen ZH, Li DD, Tang DX, Xu ZH, Sun T, Nguyen TT, Tran NL, Dao VM, Zhang CM, Huang LD, Liu YJ, Zhang XM, Yang DR, Sanjuan T, Liu XZ, Yang ZL, Yu H. Multigene phylogeny of the family Cordycipitaceae(Hypocreales):new taxa and the new systematic position of the Chinese cordycipitoid fungus Paecilomyces hepiali. Fungal Diversity, 2020, 103(1):1-46.
    [4] 刘俊,杨本寿,姜国银.蝙蝠蛾拟青霉的抑菌活性与菌丝体发酵化学组分的研究.昆明医科大学学报, 2012, 33(6):32-34, 38. Liu J, Yang BS, Jiang GY. Antibiotic activities and chemical composition of mycelia of a strain Paecilomyces hepiali Chen et Dai. Journal of Kunming Medical University, 2012, 33(6):32-34, 38.(in Chinese)
    [5] 曹阳,董升,李博腾,张淑华,梁冲,张国刚.蝙蝠蛾拟青霉菌丝体化学成分的分离与鉴定(Ⅱ).中国药物化学杂志, 2020, 30(7):423-427. Cao Y, Dong S, Li BT, Zhang SH, Liang C, Zhang GG. Isolation and identification of chemical constituents from Paecilomyces hepiali Chen et Dai (Ⅱ). Chinese Journal of Medicinal Chemistry, 2020, 30(7):423-427.(in Chinese)
    [6] 杨金玲,肖薇,何惠霞,朱慧新,王淑芳,程克棣,朱平.蝙蝠蛾拟青霉与冬虫夏草关系的分子系统学研究.药学学报, 2008, 43(4):421-426. Yang JL, Xiao W, He HX, Zhu HX, Wang SF, Cheng KD, Zhu P. Molecular phylogenetic analysis of Paecilomyces hepiali and Cordyceps sinensis. Acta Pharmaceutica Sinica, 2008, 43(4):421-426.(in Chinese)
    [7] 曹阳,张淑华,梁冲,李博腾,董升,张国刚.蝙蝠蛾拟青霉菌丝体化学成分研究.中国药物化学杂志, 2019, 29(4):300-304. Cao Y, Zhang SH, Liang C, Li BT, Dong S, Zhang GG. Study on the chemical constituents of the mycelium of Paecilomyces hepiali. Chinese Journal of Medicinal Chemistry, 2019, 29(4):300-304.(in Chinese)
    [8] 陆海峰,王忠,吴鸿雪,王锦锋.蝙蝠蛾拟青霉菌丝体研究进展.现代农业科技, 2020(20):197-200. Lu HF, Wang Z, Wu HX, Wang JF. Research progress on mycelium of Paecilomyces hepialid. Modern Agricultural Science and Technology, 2020(20):197-200.(in Chinese)
    [9] 阳丹,黄婷婷,陈成,马云淑.蝙蝠蛾拟青霉菌丝体研究现状.中国中医药信息杂志, 2015, 22(5):129-131. Yang D, Huang TT, Chen C, Ma YS. Research status on Paecilomyces hepialid. Chinese Journal of Information on Traditional Chinese Medicine, 2015, 22(5):129-131.(in Chinese)
    [10] Lee SJ, Kim SK, Choi WS, Kim WJ, Moon SK. Cordycepin causes p21WAF1-mediated G2/M cell-cycle arrest by regulating c-Jun N-terminal kinase activation in human bladder cancer cells. Archives of Biochemistry and Biophysics, 2009, 490(2):103-109.
    [11] Chen PX, Wang SN, Nie SP, Marcone M. Properties of Cordyceps sinensis:a review. Journal of Functional Foods, 2013, 5(2):550-569.
    [12] Xiang M, Tang J, Zou XL, Zhao ZY, Wang YY, Xie SN. Beta cell protecting and immunomodulatory activities of Paecilomyces Hepiali Chen mycelium in STZ induced T1DM mice. The American Journal of Chinese Medicine, 2009, 37(2):361-372.
    [13] Chatterjee R, Srinivasan KS, Maiti PC. Cordyceps sinensis (Berkeley) saccardo:structure of cordycepic acid. Journal of the American Pharmaceutical Association:Scientific Ed, 1957, 46(2):114-118.
    [14] Sprecher M, Sprinson DB. A reinvestigation of the structure of "cordycepic acid" 1a. The Journal of Organic Chemistry, 1963, 28(9):2490-2491.
    [15] 欧阳阳阳,张哲,曹忆嵘,张原青,陶艳艳,刘成海,徐列明,郭津生.虫草酸和虫草素对肝星状细胞炎症及纤维化发生特性的影响.中华肝脏病杂志, 2013, 21(4):275-278. Ouyang YY, Zhang Z, Cao YR, Zhang YQ, Tao YY, Liu HC, Xu LM, Guo JS. Effect of cordyceps acid and cordycepin on the inflammatory and fibrogenic response of hepatic stellate cells. Chinese Journal of Hepatology, 2013, 21(4):275-278.(in Chinese)
    [16] Liu ZQ, Lin S, Baker PJ, Wu LF, Wang XR, Wu H, Xu F, Wang HY, Brathwaite ME, Zheng YG. Transcriptome sequencing and analysis of the entomopathogenic fungus Hirsutella sinensis isolated from Ophiocordyceps sinensis. BMC Genomics, 2015, 16(1):106.
    [17] Jin LQ, Xu ZW, Zhang B, Yi M, Weng CY, Lin S, Wu H, Qin XT, Xu F, Teng Y, Yuan SJ, Liu ZQ, Zheng YG. Genome sequencing and analysis of fungus Hirsutella sinensis isolated from Ophiocordyceps sinensis. AMB Express, 2020, 10(1):105.
    [18] 仝晶晶.两种培养条件下蛹虫草代谢成分及其转录调控比较研究.云南大学硕士学位论文, 2018.
    [19] Yu Y, Wang WT, Wang LP, Pang F, Guo LP, Song L, Liu GM, Feng CQ. Draft genome sequence of Paecilomyces hepiali, isolated from Cordyceps sinensis. Genome Announcements, 2016, 4(4):e00606-e00616.
    [20] 宋利璞.药用植物金银花及药用真菌蝙蝠蛾拟青霉的转录组学研究.中国科学院北京基因组研究所博士学位论文, 2014.
    [21] Dong JE, Wan GW, Liang ZS. Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. Journal of Biotechnology, 2010, 148(2/3):99-104.
    [22] Hao X, Shi M, Cui L, Xu C, Zhang Y, Kai G. Effects of methyl jasmonate and salicylic acid on tanshinone production and biosynthetic gene expression in transgenic Salvia miltiorrhiza hairy roots. Biotechnology and Applied Biochemistry, 2015, 62(1):24-31.
    [23] Roy A, Bharadvaja N. Establishment of root suspension culture of Plumbago zeylanica and enhanced production of Plumbagin. Industrial Crops and Products. 2019, 137:419-427.
    [24] Tajik S, Zarinkamar F, Soltani BM, Nazari M. Induction of phenolic and flavonoid compounds in leaves of saffron (Crocus sativus L.) by salicylic acid. Scientia Horticulturae 2019, 257(17):108751.
    [25] Pu GB, Ma DM, Chen JL, Ma LQ, Wang H, Li GF, Ye HC, Liu BY. Salicylic acid activates artemisinin biosynthesis in Artemisia annua L. Plant Cell Reports, 2009, 28(7):1127-1135.
    [26] Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD, Chen ZH, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 2011, 29(7):644-652.
    [27] Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biology, 2014, 15(12):550.
    [28] 魏文婷.产甘露醇菌株的筛选及其生物合成的研究.江南大学硕士学位论文, 2014.
    [29] Lin S, Liu ZQ, Xue YP, Baker PJ, Wu H, Xu F, Teng Y, Brathwaite ME, Zheng YG. Biosynthetic pathway analysis for improving the cordycepin and cordycepic acid production in Hirsutella sinensis. Applied Biochemistry and Biotechnology, 2016, 179(4):633-649.
    [30] 王晓瑞.中国被毛孢活性物质合成途径的分析、验证与调控.浙江工业大学硕士学位论文, 2015.
    [31] Chi S, Wang GL, Liu T, Wang XM, Liu C, Jin YM, Yin HX, Xu X, Yu J. Transcriptomic and proteomic analysis of mannitol-metabolism-associated genes in Saccharina japonica. Genomics, Proteomics& Bioinformatics, 2020, 18(4):415-429.
    [32] 夏樱霞,谢放,苏强军,李佳莹,陈照禾,周刚.转录组测序技术在食药用菌研究中的应用.现代食品, 2020(24):31-33. Xia YX, Xie F, Su QJ, Li JY, Chen ZH, Zhou G. Application of transcriptome sequencing technology in study of edible and medicinal fungi. Modern Food, 2020(24):31-33.(in Chinese)
    [33] 贺润丽,王晓英,韩毅丽,刘计权,杜晨晖,王莉花.利用转录组分析款冬萜类化合物生物合成关键酶基因及表达特征.中草药, 2020, 51(20):5302-5310. He RL, Wang XY, Han YL, Liu JQ, Du CH, Wang LH. Analysis of key genes and their expression characteristics related to terpenoid biosynthesis in Tussilago farfara based on transcriptome sequencing. Chinese Traditional and Herbal Drugs, 2020, 51(20):5302-5310.(in Chinese)
    [34] 康恒,赵志礼,倪梁红,李尉涛,赵淑娟,刘铜华.全萼秦艽转录组中环烯醚萜类相关基因挖掘及验证.中国中药杂志, 2021, 46(18):4704-4711. Kang H, Zhao ZL, Ni LH, Li WT, Zhao SJ, Liu TH. Transcriptome analysis and validation of key genes involved in biosynthesis of iridoids in Gentiana lhassica. China Journal of Chinese Materia Medica, 2021, 46(18):4704-4711.(in Chinese)
    [35] 张健,潘媛,王钰,陈大霞.不同年份桔梗转录组学分析及桔梗皂苷生物合成关键基因挖掘.中国中药杂志, 2021, 46(6):1386-1392. Zhang J, Pan Y, Wang Y, Chen DX. Transcriptome analysis of Platycodon grandiflorum at different growth years and discovery of key genes for platycodin biosynthesis. China Journal of Chinese Materia Medica, 2021, 46(6):1386-1392.(in Chinese)
    [36] 祝明珠,俞年军,王秋丽,周安,顾晓,韩荣春,童小慧,彭代银.基于多花黄精转录组的多糖及薯蓣皂苷生物合成路径研究.中国中药杂志, 2020, 45(1):85-91. Zhu MZ, Yu NJ, Wang QL, Zhou A, Gu X, Han RC, Tong XH, Peng DY. Biosynthetic pathways of Polygonatum cyrtonema polysaccharide and diosgenin based on its transcriptomic data. China Journal of Chinese Materia Medica, 2020, 45(1):85-91.(in Chinese)
    [37] Pang F, Wang LP, Jin Y, Guo LP, Song LP, Liu GM, Feng CQ. Transcriptome analysis of Paecilomyces hepiali at different growth stages and culture additives to reveal putative genes in cordycepin biosynthesis. Genomics, 2018, 110(3):162-170.
    [38] Yin YL, Yu GJ, Chen YJ, Jiang S, Wang M, Jin YX, Lan XQ, Liang Y, Sun H. Genome-wide transcriptome and proteome analysis on different developmental stages of Cordyceps militaris. PLoS One, 2012, 7(12):e51853.
    [39] 封志媚. D-甘露醇在大肠杆菌中合成与分解相关酶及途径的研究.天津科技大学硕士学位论文, 2017.
    [40] 齐敏杰,梁娥,张来.诱导子在药用植物毛状根生产次生代谢产物中的作用机理与应用.生物学杂志, 2020, 37(5):99-102. Qi MJ, Liang E, Zhang L. Mechanism and application of elicitors in the production of secondary metabolites from hairy roots of medicinal plants. Journal of Biology, 2020, 37(5):99-102.(in Chinese)
    [41] 王铭,宋跃,安慧,庞秋颖,阎秀峰.外源诱导子影响植物悬浮细胞次生代谢产物积累的研究进展.植物生理学报, 2021, 57(4):739-748. Wang M, Song Y, An H, Pang QY, Yan XF. Research progress on the effect of exogenous elicitors on the accumulation of secondary metabolites in plant suspension cells. Plant Physiology Journal, 2021, 57(4):739-748.(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

唐芦波,徐娟,侯泓言,吴思昊,熊科辉,贺亮,李春如,吴学谦. 水杨酸诱导下蝙蝠蛾拟青霉转录组分析及虫草酸代谢途径关键酶基因挖掘[J]. 微生物学报, 2022, 62(10): 3751-3767

复制
分享
文章指标
  • 点击次数:393
  • 下载次数: 1032
  • HTML阅读次数: 855
  • 引用次数: 0
历史
  • 收稿日期:2022-02-08
  • 最后修改日期:2022-03-18
  • 在线发布日期: 2022-09-24
文章二维码