基于Ti4+-IMAC富集的分枝菌酸小杆菌深度覆盖磷酸化蛋白质组研究
作者:
基金项目:

国家自然科学基金(32141003,31901037);京津冀基础研究合作专项(J200001)


In-depth characterization of Mycolicibacterium smegmatis MC2155 phosphoproteome based on the Ti4+-IMAC enrichment strategy
Author:
  • MENG Shuhong

    MENG Shuhong

    College of Life Sciences, Hebei University, Baoding 071002, Hebei, China;State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Academy of Military Medical Sciences of Academy of Military Science, Beijing 102206, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHANG Lei

    CHANG Lei

    State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Academy of Military Medical Sciences of Academy of Military Science, Beijing 102206, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Fengsong

    LIU Fengsong

    College of Life Sciences, Hebei University, Baoding 071002, Hebei, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XU Ping

    XU Ping

    State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Academy of Military Medical Sciences of Academy of Military Science, Beijing 102206, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Yao

    ZHANG Yao

    State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Academy of Military Medical Sciences of Academy of Military Science, Beijing 102206, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [55]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】本研究以分枝菌酸小杆菌(Mycolicibacterium smegmatis)为研究对象,探索适于原核微生物理想的磷酸化富集方法。【方法】我们比较了二氧化钛(TiO2)、Fe3+-NTA和Ti4+螯合在磷酸酯修饰的固相微球(Ti4+-IMAC) 3种不同富集方法磷酸化肽段的富集效率,并用不同分辨率的质谱仪评估富集稳定性。【结果】Ti4+-IMAC富集效率最高,磷酸化位点数是TiO2或Fe3+-NTA方法的7倍以上;TiO2和Fe3+-NTA方法富集到的磷酸化位点数相差不大,与已报道的用TiO2方法富集的磷酸化位点数目接近。Ti4+-IMAC富集结果稳定性很好,高分辨率Lumos质谱仪鉴定到的磷酸化位点数是Velos的2.6倍。【结论】本研究较高效地实现了分枝菌酸小杆菌磷酸化事件的鉴定,共鉴定到2 280个磷酸化蛋白、10 880个磷酸化肽段及4 433个可信磷酸化位点,有望用于其他微生物的磷酸化蛋白质组学研究。

    Abstract:

    [Objective] Mycolicibacterium smegmatis was used to explore more efficient strategies for enriching phosphorylated peptides in prokaryotes.[Methods] We evaluated the efficiency of three different methods,TiO2,Fe3+-NTA and Ti4+-IMAC,for the enrichment of phosphopeptides.Further,we employed two mass spectrometers with different resolutions,Orbitrap Velos and Orbitrap Fusion Lumos,to assess the enrichment stability.[Results] Ti4+-IMAC was the optimum enrichment method,with the number of phosphopeptides and sites enriched seven-fold that of TiO2 or Fe3+-NTA.TiO2 and Fe3+-NTA showed no significant difference in the number of phosphorylation sites enriched,which was similar to the results of the published works about TiO2.In addition,the detection results of two different mass spectrometers showed that Ti4+-IMAC enrichment was stable in two biological duplicate samples.The average phosphorylation sites detected by Lumos was 2.6-fold that by Velos.[Conclusion]Ti4+-IMAC technique can efficiently accomplish high enrichment of phosphorylation events in M.smegmatis.We identified a total of 2 280 phosphorylated proteins,10 880 phosphorylated peptides and 4 433 credible phosphorylation sites.Ti4+-IMAC method can be widely used in the phosphoproteomics of other microorganisms.

    参考文献
    [1] Needham EJ, Parker BL, Burykin T, James DE, Humphrey SJ. Illuminating the dark phosphoproteome. Science Signaling, 2019, 12(565):eaau8645.
    [2] Dunphy K, Dowling P, Bazou D, O'Gorman P. Current methods of post-translational modification analysis and their applications in blood cancers. Cancers, 2021, 13(8):1930.
    [3] Humphrey SJ, James DE, Mann M. Protein phosphorylation:a major switch mechanism for metabolic regulation. Trends in Endocrinology& Metabolism, 2015, 26(12):676-687.
    [4] Needham EJ, Hingst JR, Parker BL, Morrison KR, Yang G, Onslev J, Kristensen JM, Højlund K, Ling NXY, Oakhill JS, Richter EA, Kiens B, Petersen J, Pehmøller C, James DE, Wojtaszewski JFP, Humphrey SJ. Personalized phosphoproteomics identifies functional signaling. Nature Biotechnology, 2022, 40(4):576-584.
    [5] Figlia G, Willnow P, Teleman AA. Metabolites regulate cell signaling and growth via covalent modification of proteins. Developmental Cell, 2020, 54(2):156-170.
    [6] Macek B, Forchhammer K, Hardouin J, Weber-Ban E, Grangeasse C, Mijakovic I. Protein post-translational modifications in bacteria. Nature Reviews Microbiology, 2019, 17(11):651-664.
    [7] Køhler JB, Jers C, Senissar M, Shi L, Derouiche A, Mijakovic I. Importance of protein Ser/Thr/Tyr phosphorylation for bacterial pathogenesis. FEBS Letters, 2020, 594(15):2339-2369.
    [8] Birk MS, Charpentier E, Frese CK. Automated phosphopeptide enrichment for Gram-positive bacteria. Journal of Proteome Research, 2021, 20(10):4886-4892.
    [9] Nakedi KC, Nel AJM, Garnett S, Blackburn JM, Soares NC. Comparative Ser/Thr/Tyr phosphoproteomics between two mycobacterial species:the fast growing Mycobacterium smegmatis and the slow growing Mycobacterium bovis BCG. Frontiers in Microbiology, 2015, 6:237.
    [10] Albeldas C, Ganief N, Calder B, Nakedi KC, Garnett S, Nel AJM, Blackburn JM, Soares NC. Global proteome and phosphoproteome dynamics indicate novel mechanisms of vitamin C induced dormancy in Mycobacterium smegmatis. Journal of Proteomics, 2018, 180:1-10.
    [11] Yagüe P, Gonzalez-Quiñonez N, Fernández-García G, Alonso-Fernández S, Manteca A. Correction:Yagüe, P., et al. Goals and challenges in bacterial phosphoproteomics. Int. J. Mol. Sci. 2019, 20, 5678. International Journal of Molecular Sciences, 2020, 21(24):9381.
    [12] Massier S, Robin B, Mégroz M, Wright A, Harper M, Hayes B, Cosette P, Broutin I, Boyce JD, Dé E, Hardouin J. Phosphorylation of extracellular proteins in Acinetobacter baumannii in sessile mode of growth. Frontiers in Microbiology, 2021, 12:738780.
    [13] Verma R, Pinto SM, Patil AH, Advani J, Subba P, Kumar M, Sharma J, Dey G, Ravikumar R, Buggi S, Satishchandra P, Sharma K, Suar M, Tripathy SP, Chauhan DS, Gowda H, Pandey A, Gandotra S, Prasad TSK. Quantitative proteomic and phosphoproteomic analysis of H37Ra and H37Rv strains of Mycobacterium tuberculosis. Journal of Proteome Research, 2017, 16(4):1632-1645.
    [14] Potel CM, Lin MH, Heck AJR, Lemeer S. Widespread bacterial protein histidine phosphorylation revealed by mass spectrometry-based proteomics. Nature Methods, 2018, 15(3):187-190.
    [15] Prust N, Van Der Laarse S, Van Den Toorn HWP, Van Sorge NM, Lemeer S. In-depth characterization of the Staphylococcus aureus phosphoproteome reveals new targets of Stk1. Molecular& Cellular Proteomics, 2021, 20:100034.
    [16] Block H, Maertens B, Spriestersbach A, Brinker N, Kubicek J, Fabis R, Labahn J, Schäfer F. Immobilized-metal affinity chromatography (IMAC):a review. Methods in Enzymology, 2009, 463:439-473.
    [17] Zhou HJ, Ye ML, Dong J, Corradini E, Cristobal A, Heck AJR, Zou HF, Mohammed S. Robust phosphoproteome enrichment using monodisperse microsphere-based immobilized titanium (Ⅳ) ion affinity chromatography. Nature Protocols, 2013, 8(3):461-480.
    [18] Yao YT, Dong J, Dong MM, Liu FJ, Wang Y, Mao JW, Ye ML, Zou HF. An immobilized titanium (Ⅳ) ion affinity chromatography adsorbent for solid phase extraction of phosphopeptides for phosphoproteome analysis. Journal of Chromatography A, 2017, 1498:22-28.
    [19] Zhou HJ, Low TY, Hennrich ML, Van Der Toorn H, Schwend T, Zou HF, Mohammed S, Heck AJR. Enhancing the identification of phosphopeptides from putative basophilic kinase substrates using Ti (Ⅳ) based IMAC enrichment. Molecular& Cellular Proteomics:MCP, 2011, 10(10):M110.006452.
    [20] Zhou HJ, Ye ML, Dong J, Han GH, Jiang XN, Wu RN, Zou HF. Specific phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis. Journal of Proteome Research, 2008, 7(9):3957-3967.
    [21] Bian YY, Song CX, Cheng K, Dong MM, Wang FJ, Huang JF, Sun DG, Wang LM, Ye ML, Zou HF. An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. Journal of Proteomics, 2014, 96:253-262.
    [22] Jers C, Soufi B, Grangeasse C, Deutscher J, Mijakovic I. Phosphoproteomics in bacteria:towards a systemic understanding of bacterial phosphorylation networks. Expert Review of Proteomics, 2008, 5(4):619-627.
    [23] Kobir A, Shi L, Boskovic A, Grangeasse C, Franjevic D, Mijakovic I. Protein phosphorylation in bacterial signal transduction. Biochimica et Biophysica Acta:BBA-General Subjects, 2011, 1810(10):989-994.
    [24] Dworkin J. Ser/Thr phosphorylation as a regulatory mechanism in bacteria. Current Opinion in Microbiology, 2015, 24:47-52.
    [25] Getz LJ, Runte CS, Rainey JK, Thomas NA. Tyrosine phosphorylation as a widespread regulatory mechanism in prokaryotes. Journal of Bacteriology, 2019, 201(19):e00205-e00219.
    [26] Syson K, Batey SFD, Schindler S, Kalscheuer R, Bornemann S. A temperature-sensitive Mycobacterium smegmatis glgE mutation leads to a loss of GlgE enzyme activity and thermostability and the accumulation of α-maltose-1-phosphate. Biochimica et Biophysica Acta:BBA-General Subjects, 2021, 1865(2):129783.
    [27] Cai XY, Liu L, Qiu CH, Wen CZ, He Y, Cui YX, Li SY, Zhang X, Zhang LH, Tian CL, Bi LJ, Zhou Z, Gong WM. Identification and architecture of a putative secretion tube across mycobacterial outer envelope. Science Advances, 2021, 7(34):eabg5656.
    [28] Forrellad MA, Blanco FC, Marrero Diaz De Villegas R, Vázquez CL, Yaneff A, García EA, Gutierrez MG, Durán R, Villarino A, Bigi F. Rv2577 of Mycobacterium tuberculosis is a virulence factor with dual phosphatase and phosphodiesterase functions. Frontiers in Microbiology, 2020, 11:570794.
    [29] Rosa TLSA, Marques MAM, DeBoard Z, Hutchins K, Silva CAA, Montague CR, Yuan TA, Amaral JJ, Atella GC, Rosa PS, Mattos KA, VanderVen BC, Lahiri R, Sampson NS, Brennan PJ, Belisle JT, Pessolani MCV, Berrêdo-Pinho M. Reductive power generated by Mycobacterium leprae through cholesterol oxidation contributes to lipid and ATP synthesis. Frontiers in Cellular and Infection Microbiology, 2021, 11:709972.
    [30] Bashiri G, Baker EN. Production of recombinant proteins in Mycobacterium smegmatis for structural and functional studies. Protein Science, 2015, 24(1):1-10.
    [31] Yu ZX, Zhang CH, Zhou ML, Li QM, Li H, Duan W, Li X, Feng YH, Xie JP. Mycobacterium tuberculosis PPE44(Rv2770c) is involved in response to multiple stresses and promotes the macrophage expression of IL-12 p40 and IL-6 via the p38, ERK, and NF-κB signaling axis. International Immunopharmacology, 2017, 50:319-329.
    [32] Gupta RS, Lo B, Son J. Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera. Frontiers in Microbiology, 2018, 9:67.
    [33] Wu FL, Zhao MZ, Zhang Y, Su N, Xiong Z, Xu P. Recombinant acetylated trypsin demonstrates superior stability and higher activity than commercial products in quantitative proteomics studies. Rapid Communications in Mass Spectrometry:RCM, 2016, 30(8):1059-1066.
    [34] Zhao MZ, Wu FL, Xu P. Development of a rapid high-efficiency scalable process for acetylated Sus scrofa cationic trypsin production from Escherichia coli inclusion bodies. Protein Expression and Purification, 2015, 116:120-126.
    [35] Zhao MZ, Cai M, Wu FL, Zhang Y, Xiong Z, Xu P. Recombinant expression, refolding, purification and characterization of Pseudomonas aeruginosa protease Ⅳ in Escherichia coli. Protein Expression and Purification, 2016, 126:69-76.
    [36] Peng XH, Xu F, Liu S, Li SZ, Huang QB, Chang L, Wang L, Ma X, He FC, Xu P. Identification of missing proteins in the phosphoproteome of kidney cancer. Journal of Proteome Research, 2017, 16(12):4364-4373.
    [37] Xu P, Duong DM, Peng JM. Systematical optimization of reverse-phase chromatography for shotgun proteomics. Journal of Proteome Research, 2009, 8(8):3944-3950.
    [38] Wang H, Wan L, Shi JH, Zhang T, Zhu HM, Jiang SH, Meng SH, Wu SJ, Sun JS, Chang L, Zhang LQ, Wan KL, Yang JQ, Zhao XQ, Liu HC, Zhang Y, Dai EH, Xu P. Quantitative proteomics reveals that dormancy-related proteins mediate the attenuation in Mycobacterium strains. Virulence, 2021, 12(1):2228-2246.
    [39] Zhai LH, Chang C, Li N, Duong DM, Chen H, Deng ZX, Yang J, Hong XC, Zhu YP, Xu P. Systematic research on the pretreatment of peptides for quantitative proteomics using a C18 microcolumn. Proteomics, 2013, 13(15):2229-2237.
    [40] Humphrey SJ, Karayel O, James DE, Mann M. High-throughput and high-sensitivity phosphoproteomics with the EasyPhos platform. Nature Protocols, 2018, 13(9):1897-1916.
    [41] Xu F, Yu L, Peng XH, Zhang JL, Li SZ, Liu S, Yin YN, An ZW, Wang FQ, Fu Y, Xu P. Unambiguous phosphosite localization through the combination of trypsin and LysargiNase mirror spectra in a large-scale phosphoproteome study. Journal of Proteome Research, 2020, 19(6):2185-2194.
    [42] Rappsilber J, Ishihama Y, Mann M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Analytical Chemistry, 2003, 75(3):663-670.
    [43] Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology, 2008, 26(12):1367-1372.
    [44] Chi H, Liu C, Yang H, Zeng WF, Wu L, Zhou WJ, Wang RM, Niu XN, Ding YH, Zhang Y, Wang ZW, Chen ZL, Sun RX, Liu T, Tan GM, Dong MQ, Xu P, Zhang PH, He SM. Comprehensive identification of peptides in tandem mass spectra using an efficient open search engine. Nature Biotechnology, 2018, 36(11):1059-1061.
    [45] Ma J, Chen T, Wu SF, Yang CY, Bai MZ, Shu KX, Li KL, Zhang GQ, Jin Z, He FC, Hermjakob H, Zhu YP. iProX:an integrated proteome resource. Nucleic Acids Research, 2019, 47(D1):D1211-D1217.
    [46] Tanzer MC, Bludau I, Stafford CA, Hornung V, Mann M. Phosphoproteome profiling uncovers a key role for CDKs in TNF signaling. Nature Communications, 2021, 12:6053.
    [47] Sacco F, Humphrey SJ, Cox J, Mischnik M, Schulte A, Klabunde T, Schäfer M, Mann M. Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion. Nature Communications, 2016, 7:13250.
    [48] Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 2009, 4(1):44-57.
    [49] Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools:paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research, 2008, 37(1):1v13.
    [50] Macek B, Gnad F, Soufi B, Kumar C, Olsen JV, Mijakovic I, Mann M. Phosphoproteome analysis of E. coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation. Molecular& Cellular Proteomics:MCP, 2008, 7(2):299-307.
    [51] Adam K, Hunter T. Histidine kinases and the missing phosphoproteome from prokaryotes to eukaryotes. Laboratory Investigation, 2018, 98(2):233-247.
    [52] Schmidt A, Trentini DB, Spiess S, Fuhrmann J, Ammerer G, Mechtler K, Clausen T. Quantitative phosphoproteomics reveals the role of protein arginine phosphorylation in the bacterial stress response. Molecular& Cellular Proteomics, 2014, 13(2):537-550.
    [53] Trentini DB, Suskiewicz MJ, Heuck A, Kurzbauer R, Deszcz L, Mechtler K, Clausen T. Arginine phosphorylation marks proteins for degradation by a Clp protease. Nature, 2016, 539(7627):48-53.
    [54] Lai SJ, Tu IF, Wu WL, Yang JT, Luk LYP, Lai MC, Tsai YH, Wu SH. Site-specific His/Asp phosphoproteomic analysis of prokaryotes reveals putative targets for drug resistance. BMC Microbiology, 2017, 17(1):123.
    [55] Walsh CT, Garneau-Tsodikova S, Gatto GJ. Protein posttranslational modifications:the chemistry of proteome diversifications. Angewandte Chemie:International Ed in English, 2005, 44(45):7342-7372.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

蒙书红,常蕾,柳峰松,徐平,张瑶. 基于Ti4+-IMAC富集的分枝菌酸小杆菌深度覆盖磷酸化蛋白质组研究[J]. 微生物学报, 2022, 62(10): 3768-3783

复制
分享
文章指标
  • 点击次数:428
  • 下载次数: 977
  • HTML阅读次数: 424
  • 引用次数: 0
历史
  • 收稿日期:2022-02-08
  • 最后修改日期:2022-06-22
  • 在线发布日期: 2022-09-24
文章二维码