一种自下而上的合成微生物组理性构建策略,用于郫县豆瓣发酵剂设计
作者:
基金项目:

国家重点研发计划(2018YFC1604100);固态发酵资源利用四川省重点实验室开放基金(2018GTY003)


A bottom-up strategy for constructing a synthetic microbiome and its application to the design of Pixian Douban starter
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】提出一种合成微生物组的理性构建策略,用于构建郫县豆瓣蚕豆醅初始发酵的微生物组合菌剂。【方法】采取自下而上的合成微生物组理性构建策略,以相对丰度、频率和特征向量中心度作为核心微生物属的选择指标,分析确定蚕豆醅发酵核心微生物;设计模拟原位体系的全合成培养基,并利用该培养基快速、稳定地检测核心微生物包括产香性能在内的发酵特征。基于核心微生物的产香互补性能进行双菌组合发酵实验,结合核心微生物之间的生长相互作用,设计三菌组合发酵菌剂并验证其发酵性能。【结果】本研究确定并分离了郫县豆瓣蚕豆醅发酵过程中的 9种核心微生物。检测核心微生物产生的挥发性风味化合物,发现酵母菌类、乳酸菌类和其他类微生物之间存在产香互补关系。然后,结合微生物间的生长抑制关系设计了由乳酸片球菌、肉葡萄球菌及异变假丝酵母组成的三菌组合菌剂。与企业原位发酵样品相比,三菌组合菌剂产生的挥发性化合物数量达到原位样品的63.1%,化合物种类结构较为相似。与原位样品相比,组合菌剂样品氨基酸态氮浓度提升了21.8%。【结论】本研究提出了一种自下而上的合成微生物组理性构建策略,基于此策略设计了郫县豆瓣蚕豆醅发酵组合菌剂。使用该组合菌剂作为起始发酵剂发酵的郫县豆瓣蚕豆醅具有良好的风味谱和优异的氨基酸态氮水平。本研究在合成微生物组构建与发酵食品工艺改造方面具有较大的科学与应用价值。

    Abstract:

    [Objective] This study aimed to construct a synthetic microbiome which would be used as a starter for Pixian Douban (broad bean paste) fermentation.[Methods] We analyzed core microorganisms of Pixian Douban fermentation by the combined indicators,including microbial relative abundance,frequency and eigenvector centrality.Then a fully synthetic medium which simulated the in situ fermentation system was designed and used to explore the growth and aroma-producing characteristics of core microorganisms.According to the complementary aroma-producing characteristics of core microorganisms,a two-strain co-fermentation experiment was conducted.Moreover,taking the microbial interactions into account,we designed a three-strain community and verified its fermentation performance.[Results] In this study,9 microorganisms were identified and isolated from Pixian Douban as the core microorganisms.Then the volatile profiles of these core microorganisms were detected and a complementary aroma-producing relationship was found among yeasts,lactic acid bacteria and other microorganisms.Combining the growth inhibition relationship among microorganisms,we formed a three-strain combined inoculum,including Pediococcus acidilactici,Staphylococcus carnosus and Candida versatilis.With the three-strain community as the fermentation starter,the fermentation samples showed 63.1% similarity of flavor compounds and 21.8% improvement of amino acid nitrogen content compared to the in situ samples.[Conclusion] A bottom-up strategy for constructing a synthetic microbiome community was proposed,and a three-strain microbial community as the starter for Pixian Douban production was built.This study is valuable for synthetic microbiome construction and fermentation process optimization.

    参考文献
    [1] Steinkraus KH. Nutritional significance of fermented foods. Food Research International, 1994, 27(3):259‒267.
    [2] Taylor BC, Lejzerowicz F, Poirel M, Shaffer JP, Jiang LJ, Aksenov A, Litwin N, Humphrey G, Martino C, Miller-Montgomery S, Dorrestein PC, Veiga P, Song SJ, McDonald D, Derrien M, Knight R. Consumption of fermented foods is associated with systematic differences in the gut microbiome and metabolome. mSystems, 2020, 5(2):e00901-19.
    [3] Marco ML, Heeney D, Binda S, Cifelli CJ, Cotter PD, Foligné B, Gänzle M, Kort R, Pasin G, Pihlanto A, Smid EJ, Hutkins R. Health benefits of fermented foods:microbiota and beyond. Current Opinion in Biotechnology, 2017, 44:94‒102.
    [4] Şanlier N, Gökcen BB, Sezgin AC. Health benefits of fermented foods. Critical Reviews in Food Science and Nutrition, 2019, 59(3):506‒527.
    [5] Tamang JP, Cotter PD, Endo A, Han NS, Kort R, Liu SQ, Mayo B, Westerik N, Hutkins R. Fermented foods in a global age:east meets west. Comprehensive Reviews in Food Science and Food Safety, 2020, 19(1):184‒217.
    [6] Li ZH, Rui JP, Li XZ, Li JB, Dong L, Huang QL, Huang C, Wang ZP, Li L, Xuan P, Tang YM, Chen FS. Bacterial community succession and metabolite changes during doubanjiang-meju fermentation, a Chinese traditional fermented broad bean (Vicia faba L.) paste. Food Chemistry, 2017, 218:534‒542.
    [7] Zhang LJ, Bao YD, Chen HF, Huang JQ, Xu Y. Functional microbiota for polypeptide degradation during hypertonic moromi-fermentation of Pixian broad bean paste. Foods:Basel, Switzerland, 2020, 9(7):930.
    [8] Lu YH, Tan XY, Lv YP, Yang GH, Chi YL, He Q. Flavor volatiles evolution of Chinese horse bean-chili-paste during ripening, accessed by GC×GC-TOF/MS and GC-MS-olfactometry. International Journal of Food Properties, 2020, 23(1):570‒581.
    [9] Lin HB, Liu Y, He Q, Liu P, Che ZM, Wang XM, Huang JQ. Characterization of odor components of Pixian Douban (broad bean paste) by aroma extract dilute analysis and odor activity values. International Journal of Food Properties, 2019, 22(1):1223‒1234.
    [10] Lu YH, Yang LZ, Yang GH, Chi YL, Sun Q, He Q. Insight into the fermentation of Chinese horse bean-chili-paste. Food Reviews International, 2021, 37(7):683‒705.
    [11] Zhao C, Fan WL, Xu Y. Characterization of key aroma compounds in Pixian broad bean paste through the molecular sensory science technique. LWT, 2021, 148:111743.
    [12] Lawson CE, Harcombe WR, Hatzenpichler R, Lindemann SR, Löffler FE, OʾMalley MA, Martín HG, Pfleger BF, Raskin L, Venturelli OS, Weissbrodt DG, Noguera DR, McMahon KD. Common principles and best practices for engineering microbiomes. Nature Reviews Microbiology, 2019, 17(12):725‒741.
    [13] Gilmore SP, Lankiewicz TS, Wilken SE, Brown JL, Sexton JA, Henske JK, Theodorou MK, Valentine DL, OʾMalley MA. Top-down enrichment guides in formation of synthetic microbial consortia for biomass degradation. ACS Synthetic Biology, 2019, 8(9):2174‒2185.
    [14] Jia Y, Niu CT, Lu ZM, Zhang XJ, Chai LJ, Shi JS, Xu ZH, Li Q. A bottom-up approach to develop a synthetic microbial community model:application for efficient reduced-salt broad bean paste fermentation. Applied and Environmental Microbiology, 2020, 86(12):e00306-20.
    [15] Zhou K, Qiao KJ, Edgar S, Stephanopoulos G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nature Biotechnology, 2015, 33(4):377‒383.
    [16] Wang P, Wu Q, Jiang XJ, Wang ZQ, Tang JL, Xu Y. Bacillus licheniformis affects the microbial community and metabolic profile in the spontaneous fermentation of Daqu starter for Chinese liquor making. International Journal of Food Microbiology, 2017, 250:59‒67.
    [17] Lee KL, Buckley HR, Campbell CC. An amino acid liquid synthetic medium for the development of mycellal and yeast forms of Candida albicans. Sabouraudia:Journal of Medical and Veterinary Mycology, 1975, 13(2):148‒153.
    [18] Ohira K, Ojima K, Fujiwara A. Studies on the nutrition of rice cell culture Ⅰ. A simple, defined medium for rapid growth in suspension culture. Plant and Cell Physiology, 1973, 14(6):1113‒1121.
    [19] Lino F, Basso TO, Sommer MOA. A synthetic medium to simulate sugarcane molasses. Biotechnology for Biofuels, 2018, 11:221.
    [20] Liu CC, Feng SB, Wu Q, Huang HQ, Chen ZX, Li SW, Xu Y. Raw material regulates flavor formation via driving microbiota in Chinese liquor fermentation. Frontiers in Microbiology, 2019, 10:1520.
    [21] Xia LC, Steele JA, Cram JA, Cardon ZG, Simmons SL, Vallino JJ, Fuhrman JA, Sun FZ. Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates. BMC Systems Biology, 2011, 5(S2):S15.
    [22] Csardi G, Nepusz T. The igraph software package for complex network research. Inter Journal Complex Systems, 2006, 1695(5):1‒9.
    [23] Wang SL, Wu Q, Nie Y, Wu JF, Xu Y. Construction of synthetic microbiota for reproducible flavor compound metabolism in Chinese light-aroma-type liquor produced by solid-state fermentation. Applied and Environmental Microbiology, 2019, 85(10):e03090-18.
    [24] Berry D, Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Frontiers in Microbiology, 2014, 5:219.
    [25] Bonacich P. Some unique properties of eigenvector centrality. Social Networks, 2007, 29(4):555‒564.
    [26] Coburn B, Grassl GA, Finlay BB. Salmonella, the host and disease:a brief review. Immunology and Cell Biology, 2007, 85(2):112‒118.
    [27] Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B. Clinical and pathophysiological overview of Acinetobacter infections:a century of challenges. Clinical Microbiology Reviews, 2017, 30(1):409‒447.
    [28] Li JL, Huang J, Jin Y, Wu CD, Shen DZ, Zhang SY, Zhou RQ. Mechanism and kinetics of degrading aflatoxin B1 by salt tolerant Candida versatilis CGMCC 3790. Journal of Hazardous Materials, 2018, 359:382‒387.
    [29] Giri S, Waschina S, Kaleta C, Kost C. Defining division of labor in microbial communities. Journal of Molecular Biology, 2019, 431(23):4712‒4731.
    [30] D՚Souza G, Shitut S, Preussger D, Yousif G, Waschina S, Kost C. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Natural Product Reports, 2018, 35(5):455‒488.
    [31] Wang RF, Zhao SJ, Wang ZT, Koffas MA. Recent advances in modular co-culture engineering for synthesis of natural products. Current Opinion in Biotechnology, 2020, 62:65‒71.
    [32] Kastman EK, Kamelamela N, Norville JW, Cosetta CM, Dutton RJ, Wolfe BE. Biotic interactions shape the ecological distributions of Staphylococcus species. mBio, 2016, 7(5):e01157-16.
    [33] Fornoff F, Klein AM, Blüthgen N, Staab M. Tree diversity increases robustness of multi-trophic interactions. Proceedings Biological Sciences, 2019, 286(1898):20182399.
    [34] Kubo YJ, Rooney AP, Tsukakoshi Y, Nakagawa R, Hasegawa H, Kimura K. Phylogenetic analysis of Bacillus subtilis strains applicable to natto (fermented soybean) production. Applied and Environmental Microbiology, 2011, 77(18):6463‒6469.
    [35] Xu R, Zhang K, Liu P, Khan A, Xiong J, Tian FK, Li XK. A critical review on the interaction of substrate nutrient balance and microbial community structure and function in anaerobic co-digestion. Bioresource Technology, 2018, 247:1119‒1127.
    [36] Gilbert JA, Steele JA, Caporaso JG, Steinbrück L, Reeder J, Temperton B, Huse SS, McHardy AC, Knight R, Joint I, Somerfield P, Fuhrman JA, Field D. Defining seasonal marine microbial community dynamics. The ISME Journal, 2012, 6(2):298‒308.
    [37] Langfelder P, Horvath S. WGCNA:an R package for weighted correlation network analysis. BMC Bioinformatics, 2008, 9:559.
    [38] Deng Y, Jiang YH, Yang YF, He ZL, Luo F, Zhou JZ. Molecular ecological network analyses. BMC Bioinformatics, 2012, 13:113.
    [39] Reshef DN, Reshef YA, Finucane HK, Grossman SR, McVean G, Turnbaugh PJ, Lander ES, Mitzenmacher M, Sabeti PC. Detecting novel associations in large data sets. Science, 2011, 334(6062):1518‒1524.
    [40] Depner M, Taft DH, Kirjavainen PV, Kalanetra KM, Karvonen AM, Peschel S, Schmausser-Hechfellner E, Roduit C, Frei R, Lauener R, Divaret-Chauveau A, Dalphin JC, Riedler J, Roponen M, Kabesch M, Renz H, Pekkanen J, Farquharson FM, Louis P, Mills DA, Von Mutius E, Ege MJ. Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma. Nature Medicine, 2020, 26(11):1766‒1775.
    [41] Allison SD, Martiny JBH. Colloquium paper:resistance, resilience, and redundancy in microbial communities. PNAS, 2008, 105(Suppl 1):11512‒11519.
    [42] Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O'Connor MI, Ackermann M, Hahn AS, Srivastava DS, Crowe SA, Doebeli M, Parfrey LW. Function and functional redundancy in microbial systems. Nature Ecology& Evolution, 2018, 2(6):936‒943.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郑鹏飞,张丽杰,王栋,徐岩. 一种自下而上的合成微生物组理性构建策略,用于郫县豆瓣发酵剂设计[J]. 微生物学报, 2022, 62(10): 3913-3931

复制
分享
文章指标
  • 点击次数:454
  • 下载次数: 1132
  • HTML阅读次数: 814
  • 引用次数: 0
历史
  • 收稿日期:2022-02-22
  • 最后修改日期:2022-03-18
  • 在线发布日期: 2022-09-24
文章二维码