青海一株蚕豆根瘤菌的鉴定及抗旱性评价
作者:
基金项目:

青海省科学技术厅项目(2020-ZJ-709);青海省农林科学院创新基金(2019-NKY-04);国家现代农业产业技术体系专项(CARS-08)


Identification of Vicia faba Rhizobium and drought resistance verification in arid region of Qinghai
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】研究青海干旱地区蚕豆根瘤菌的遗传多样性,获得与蚕豆品种共生匹配且具有耐旱性的根瘤菌株,促进蚕豆耐旱根瘤菌在青海干旱地区生产中的应用。【方法】以分离自青海干旱地区一株菌株QHCD22为材料,利用细菌形态学、生理生化指标鉴定、Biolog细菌鉴定系统、16S rRNA基因序列分析、全基因组分析等进行菌种鉴定和系统发育分析,进一步通过PEG6000模拟干旱胁迫、盆栽回接干旱胁迫处理及旱作田间接种验证试验对该菌株的耐旱性进行综合评价。【结果】QHCD22菌株属快生型根瘤菌属(Rhizobium),Rhizobium indicum种。随着PEG6000模拟干旱胁迫程度的加剧,在−0.6 mPa这一更低渗透势时菌株存活数量增高,浊度由61.48%上升到69.42%,表现出较强的耐旱性。盆栽试验表明,接种根瘤菌处理(NA)的株高、植株鲜干比、根瘤数、根瘤鲜重、叶绿素含量(SPAD)、叶片相对含水量(RWC)、脯氨酸含量(PRO)、超氧化物歧化酶活性(SOD)、根系活力(TCC)均高于不接种根瘤菌处理(NN),并且在正常供水条件下,NA处理的各指标也均高于NN处理。旱作田间验证试验表明接种该菌株显著提高固氮酶活性,青海13号蚕豆根瘤固氮酶活性由不接种的42.07 C2H4 nmol/(g·h)显著增加到221.78 C2H4 nmol/(g·h),青蚕14号蚕豆由40.60 C2H4 nmol/(g·h)显著增加到109.78 C2H4 nmol/(g·h),马牙蚕豆由33.41 C2H4 nmol/(g·h)显著增加到643.15 C2H4 nmol/(g·h)。接种根瘤菌对于增加产量具有促进作用,其中青蚕14号的增产效果显著,增产幅度达32.3%。【结论】QHCD22菌株可能为快生型根瘤菌属的一个种Rhizobium indicum,具有一定的耐旱性,研究表明接种根瘤菌可以提高蚕豆的耐旱性,尤其对干旱敏感型蚕豆品种增产效果显著,具有潜在的应用前景。

    Abstract:

    [Objective] To analyze the genetic diversity of Vicia faba Rhizobium in arid region of Qinghai,so as to obtain the Rhizobium strain with drought tolerance and matching V.faba varieties and thus promote the application of drought-tolerant Rhizobium of V.faba in arid region of Qinghai.[Methods] With the strain QHCD22 isolated from the arid region of Qinghai as the research subject,species identification and phylogenetic analysis were performed by morphology,physiological and biochemical characteristics,Biolog microbial identification system,16S rRNA gene sequencing and whole genome analysis.Further,polyethylene glycol (PEG)6 000 simulated drought stress,pot experiment and field plot trial were used to evaluate the drought resistance of the strain.[Results] Strain QHCD22 belonged to Rhizobium indicum.With the increased addition of PEG 6 000 to yeast mannitol agar (YMA) broth medium,the strain had an intermediate lethal osmotic potential under medium PEG concentration.But the number of viable strains increased under higher PEG concentration (osmotic potential of−0.6 mPa),and the turbidity of the strain rose from 61.48% to 69.42%,showing a strong drought tolerance.Pot experiment revealed that V.faba inoculated with the strain had higher plant height,GW/DW ratio,nodule number,nodule fresh weight,SPAD values,leaf relative water content (RWC),proline (PRO) content,superoxide dismutase (SOD) activity and root vatality (triphenyltetrazolium chloride,TTC) than that non-inoculated.In addition,under the condition of normal water,the indexes of the inoculated V.faba were higher than those of non-inoculated.The field plot trial indicated that the nitrogenase activity of strain QHCD22 was significantly elevated.Specifically,the nitrogenase activities of Qinghai 13 variety,Qingcan 14 variety and Maya variety ranged from 42.07 to 221.78 C2H4 nmol/(g·h),40.60 to 109.78 nmol C2H4 nmol/(g·h),and 33.41 to 643.15 C2H4 nmol/(g·h),respectively.Rhizobium inoculation promoted the increase of V.faba yield,with Qingcan 14 variety having a significant increase of 32.3%.[Conclusion] Strain QHCD22 belonged to Rhizobium indicum,which had certain drought-tolerant characteristics.The study confirmed that Rhizobium inoculation could improve the drought tolerance of V.faba,especially the drought-sensitive V.faba variety.Therefore the strain had potential application prospects.

    参考文献
    [1] 叶茵.中国蚕豆学.北京:中国农业出版社, 2003.
    [2] 李萍,侯万伟,刘玉皎.青海高原耐旱蚕豆品种青海13号响应干旱胁迫蛋白质组学分析.作物学报, 2019, 45(2):267‒275. Li P, Hou WW, Liu YJ. Proteomic analysis of drought stress response on drought resistance for Vicia faba L. variety'Qinghai 13'in Qinghai Plateau of China. Acta Agronomica Sinica, 2019, 45(2):267‒275.(in Chinese)
    [3] Stefan A, Van Cauwenberghe J, Rosu CM, Stedela C, Labroud NE, Flemetakise E, Efrose RC. Genetic diversity and structure of Rhizobium leguminosarum populations associated with clover plants are influenced by local environmental variables. Systematic and Applied Microbiology, 2018, 41(3):251‒259.
    [4] Herridge DF, Peoples MB, Boddey RM. Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil, 2008, 311(1/2):1‒18.
    [5] 陈文新,汪恩涛.中国根瘤菌.北京:科学出版社, 2011.
    [6] 胥雅馨,徐玥,李玲,吴全忠,陈国栋,黄兴军,翟云龙.接种根瘤菌对南疆春大豆结瘤和生长的影响.大豆科学, 2021, 40(1):98‒105. Xu YX, Xu Y, Li L, Wu QZ, Chen GD, Huang XJ, Zhai YL. Effects of rhizobia inoculation on nodulation and growth of spring soybean in southern Xinjiang. Soybean Science, 2021, 40(1):98‒105.(in Chinese)
    [7] 马家斌,于晓波,吴海英,张明荣.接种根瘤菌对西南地区大豆光合性能和固氮能力的影响.中国油料作物学报, 2020, 42(1):102‒108. Ma JB, Yu XB, Wu HY, Zhang MR. Effects of inoculation of different Rhizobium on photosynthetic characteristics and nitrogen fixation of soybean. Chinese Journal of Oil Crop Sciences, 2020, 42(1):102‒108.(in Chinese)
    [8] 王敏,秦杰,杨万明,岳爱琴,赵晋忠,张永坡,高春艳,杜维俊.晋大88高匹配性强耐盐根瘤菌筛选.大豆科学, 2021, 40(3):385‒393. Wang M, Qin J, Yang WM, Yue AQ, Zhao JZ, Zhang YP, Gao CY, Du WJ. Screening of salt-tolerant and well symbiotic matching soybean rhizobia strains for jinda 88. Soybean Science, 2021, 40(3):385‒393.(in Chinese)
    [9] Sofi PA, Saba I, Amin Z. Root architecture and rhizobial inoculation in relation to drought stress response in common bean (Phaseolus vulgaris L.). Journal of Applied& Natural Science, 2017, 9(1):502‒507.
    [10] Yanni Y, Zidan M, Dazzo F, Rizk R, Mehesen A, Abdelfattah F, Elsadany A. Enhanced symbiotic performance and productivity of drought stressed common bean after inoculation with tolerant native rhizobia in extensive fields. Agriculture Ecosystems& Environment, 2016, 232:119‒128.
    [11] 刘佳,张杰,秦文婧,谢杰,王芳东,项兴佳,刘光荣,徐昌旭.施氮和接种根瘤菌对红壤旱地花生生长及氮素累积的影响.核农学报, 2016, 30(12):2441‒2450. Liu J, Zhang J, Qin WJ, Xie J, Wang FD, Xiang XJ, Liu GR, Xu CX. Effects of nitrogen application and rhizobia inoculation on peanut growth and nitrogen accumulation in red soil upland. Journal of Nuclear Agricultural Sciences, 2016, 30(12):2441‒2450.(in Chinese)
    [12] 张慧敏,高永,程波,樊璐,通旭芳,万芳,刘雅婧.接种根瘤菌后3个紫花苜蓿品种耐盐性综合评价.东北林业大学学报, 2020, 48(2):40‒46. Zhang HM, Gao Y, Cheng B, Fan L, Tong XF, Wan F, Liu YJ. Comprehensive evaluation of salt tolerance of 3Medicago sativa L. cultivars inoculated with Rhizobium. Journal of Northeast Forestry University, 2020, 48(2):40‒46.(in Chinese)
    [13] Kumar N, Srivastava P, Vishwakarma K, Kumar R, Kuppala H, Maheshwari SK, Vats S. The Rhizobium-plant symbiosis:state of the art. Plant Microbe Symbiosis, 2020:1-20. DOI:10.1007/978-3-030-36248-5_1
    [14] Noori F, Etemasi H, Najafi Zaeini H, Khoshkholgh-Sima N A, Hosseini Salekdeh G, Alishahi F. Mining alfalfa (Medicago sativa L.) nodules for salinity tolerant non-rhizobial bacteria to improve growth of alfalfa under salinity stress. Ecotoxicology and Environmental Safety, 2018, 162:129‒138.
    [15] 马蕾,李胜,马绍英,陈桂平,柴强,杨晓明.豌豆根瘤共生植株生长和光合荧光特性对水分胁迫的响应.西北农业学报, 2020, 29(4):537‒551. Ma L, Li S, Ma SY, Chen GP, Chai Q, Yang XM. Response of growth and photosynthetic fluorescence characteristics of Rhizobium symbiosis plants to water stress. Acta Agriculturae Boreali-Occidentalis Sinica, 2020, 29(4):537‒551.(in Chinese)
    [16] Williams PM, Sicardi De Mallorca M. Effect of osmotically induced leaf moisture stress on nodulation and nitrogenase activity of Glycine max. Plant and Soil, 1984, 80(2):267‒283.
    [17] Rejili M, Mahdhi M, Fterich A, Dhaoui S, Guefrachi I, Abdeddayem R, Mars M. Symbiotic nitrogen fixation of wild legumes in tunisia:soil fertility dynamics, field nodulation and nodules effectiveness. Agriculture, Ecosystems& Environment, 2012, 157:60‒69.
    [18] 刘旭艳,石凤翎,刘昊,王瑞峰,石凤玲.接种根瘤菌对苜蓿生长及土壤养分的影响.中国草地学报, 2016, 38(6):45‒52. Liu XY, Shi FL, Liu H, Wang RF, Shi FL. Effects of Rhizobium on the growth of alfalfa and the soil nutrient content. Chinese Journal of Grassland, 2016, 38(6):45‒52.(in Chinese)
    [19] Furlan AL, Bianucci E, Castro S, Dietz KJ. Metabolic features involved in drought stress tolerance mechanisms in peanut nodules and their contribution to biological nitrogen fixation. Plant Science, 2017, 263:12‒22.
    [20] 熊惠洋.蚕豆土著根瘤菌的生物地理分布及其形成机制.中国农业大学博士学位论文, 2017.
    [21] 路敏琦,李俊,姜昕,李力,沈德龙,曹凤明.我国蚕豆根瘤菌的多样性和系统发育研究.应用与环境生物学报, 2007, 13(1):73‒77. Lu MQ, Li J, Jiang X, Li L, Shen DL, Cao FM. Diversity and phylogeny of rhizobia isolated from the nodules of broad bean (Vicia faba L.) in China. Chinese Journal of Applied& Environmental Biology, 2007, 13(1):73‒77.(in Chinese)
    [22] 韩梅,马晓彤,曹卫东,张宏亮,王雪翠.青海蚕豆根瘤菌的系统发育与多样性研究.青海大学学报:自然科学版, 2015, 33(5):5‒9. Han M, Ma XT, Cao WD, Zhang HL, Wang XC. Phylogeny and diversity of broad bean Rhizobium in Qinghai. Journal of Qinghai University:Natural Science Edition, 2015, 33(5):5‒9.(in Chinese)
    [23] 张小娟.青海省不同生态区蚕豆根瘤菌16S rDNA分析.干旱地区农业研究, 2018, 36(4):259‒263. Zhang XJ. 16S rDNA gene of Rhizobium isolated from faba bean of different ecotopes in Qinghai province. Agricultural Research in the Arid Areas, 2018, 36(4):259‒263.(in Chinese)
    [24] 邹兰,王科,钟坤仲,周涛,杨玲,杨华,徐开未.攀西地区蚕豆根瘤菌抗逆性研究.湖北农业科学, 2013, 52(11):2516‒2518, 2523. Zou L, Wang K, Zhong KZ, Zhou T, Yang L, Yang H, Xu KW. Research on stress tolerance of faba bean rhizobia in Panxi. Hubei Agricultural Sciences, 2013, 52(11):2516‒2518, 2523.(in Chinese)
    [25] 李萍,滕长才,丁宝军,刘玉皎,侯万伟,何涛.青海干旱地区蚕豆根瘤菌耐旱性研究.江西农业大学学报, 2021, 43(6):1241‒1249. Li P, Teng CC, Ding BJ, Liu YJ, Hou WW, He T. A study on drought tolerance of rhizobia strains of faba bean (Vicia faba L.) isolated from drought regions in Qinghai plateau. Acta Agriculturae Universitatis Jiangxiensis, 2021, 43(6):1241‒1249.(in Chinese)
    [26] 东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社, 2001.
    [27] Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J. Introducing EzBioCloud:a taxonomically united database of 16S rRNA and whole genome assemblies. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(5):1613‒1617.
    [28] Coil D, Jospin G, Darling AE. A5-miseq:an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics, 2014, 31(4):587‒589.
    [29] Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. SPAdes:a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 2012, 19(5):455‒477.
    [30] Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng QD, Wortman J, Young SK, Earl AM. Pilon:an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One, 2014, 9(11):e112963.
    [31] 马晓彤.苜蓿根瘤菌与苜蓿品种共生匹配优良组合筛选的研究.中国农业科学院硕士学位论文, 2009.
    [32] 姚延轩,接伟光,杜燕,赵冬梅,阎秀峰.根瘤菌的分类、鉴定及应用技术研究现状.中国农学通报, 2020, 36(15):100‒105. Yao YX, Jie WG, Du Y, Zhao DM, Yan XF. Taxonomy, identification and application of Rhizobium. Chinese Agricultural Science Bulletin, 2020, 36(15):100‒105.(in Chinese)
    [33] 郑浩宇,黄炳林,王孟雪,金喜军,张玉先,胡国华.氮肥减施与接种根瘤菌对大豆光合与产量的影响.大豆科学, 2019, 38(3):413‒420. Zheng HY, Huang BL, Wang MX, Jin XJ, Zhang YX, Hu GH. The effect of nitrogen fertilizer reduction and Rhizobium inoculation on soybean photosynthesis and yield. Soybean Science, 2019, 38(3):413‒420.(in Chinese)
    [34] 马蕾,马绍英,陈贵平,柴强,李胜.豌豆与根瘤共生对水分胁迫的生理响应.草业学报, 2019, 28(9):96‒109. Ma L, Ma SY, Chen GP, Chai Q, Li S. Physiological responses of pea and nodule symbiosis to water stress. Acta Prataculturae Sinica, 2019, 28(9):96‒109.(in Chinese)
    [35] 程波,王健,石红标,张慧敏,张瑞强,甄超,翟波.草甘膦和根瘤菌对紫花苜蓿品质及固氮能力的影响.中国草地学报, 2021, 43(2):47‒53. Cheng B, Wang J, Shi HB, Zhang HM, Zhang RQ, Zhen C, Zhai B. Effects of glyphosate and Rhizobium on the quality traits and nitrogen fixation of Medicago sativa. Chinese Journal of Grassland, 2021, 43(2):47‒53.(in Chinese)
    [36] Noor F, Etemasi H, Zaeini HN, Khoshkholgh-Simaet NA, Salekdeh GH, Alishah F. Mining alfalfa (Medicago sativa L.) nodules for salinity tolerant non-rhizobial bacteria to iimprove growth of alfalfa under salinity stress. Ecotoxicology and Environmental Safety, 2018, 162:129‒138.
    [37] 刘鹏,田颖哲,钟永嘉,廖红.酸性土壤上花生高效根瘤菌的分离及应用.中国农业科学, 2019, 52(19):3393‒3403. Liu P, Tian YZ, Zhong YJ, Liao H. Isolation and application of effective Rhizobium strains in peanut on acidic soils. Scientia Agricultura Sinica, 2019, 52(19):3393‒3403.(in Chinese)
    [38] Li Y, Lei XQ, Xu YT, Zhu H, Xu MY, Fu LJ, Zheng W, Zhang JL, Zheng TL. Rhizobium albus sp. nov., isolated from lake water in Xiamen, Fujian province of China. Current Microbiology, 2017, 74(1):42‒48.
    [39] Zhao JJ, Zhang J, Zhang RJ, Zhang CW, Yin HQ, Zhang XX. Rhizobium rhizosphaerae sp. nov., a novel species isolated from rice rhizosphere. Antonie van Leeuwenhoek, 2017, 110:651‒656.
    [40] Chan JZM, Halachev MR, Loman NJ, Constantinidou C, Pallen MJ. Defining bacterial species in the genomic era:insights from the genus Acinetobacter. BMC Microbiology, 2012, 12:302.
    [41] Rahi P, Giram P, Chaudhari D, DiCenzo GC, Kiran S, Khullar A, Chandel M, Gawari S, Mohan A, Chavan S, Mahajan B. Rhizobium indicum sp. nov., isolated from root nodules of pea (Pisum sativum) cultivated in the Indian trans-Himalayas. Systematic and Applied Microbiology, 2020, 43(5):126‒127.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李萍,滕长才,刘玉皎,张金发,侯万伟,何涛,张晓玲,王建忠. 青海一株蚕豆根瘤菌的鉴定及抗旱性评价[J]. 微生物学报, 2022, 62(10): 4030-4046

复制
分享
文章指标
  • 点击次数:329
  • 下载次数: 918
  • HTML阅读次数: 894
  • 引用次数: 0
历史
  • 收稿日期:2022-02-28
  • 最后修改日期:2022-04-19
  • 在线发布日期: 2022-09-24
文章二维码