拉曼光谱分析技术在资源微生物发酵性能评价中的应用
作者:
基金项目:

国家重点研发计划(2021YFC2101101);国家自然科学基金(21978071, U1932141);浙江省引进培育领军型创新创业团队项目(2018R01014)


Applications of Raman spectroscopy in fermentation evaluation of resource microorganisms
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    微生物发酵过程是细胞新陈代谢进行物质转化的过程,为了提高目标产物的转化率,需要对微生物发酵动态特性进行实时分析,以便实时优化发酵过程。拉曼光谱(Raman spectroscopy)量化测试作为一种有应用前景的在线过程分析技术,可以在避免微生物污染的条件下,实现精准监测,进而用于优化控制微生物发酵过程。【目的】以运动发酵单胞菌(Zymomonas mobilis)为例,建立微生物发酵过程中葡萄糖、木糖、乙醇和乳酸浓度拉曼光谱预测模型,并进行准确性验证。【方法】采用浸入式在线拉曼探头,收集运动发酵单胞菌发酵过程中多个组分的拉曼光谱,采用偏最小二乘法对光谱信号进行预处理和多元数据分析,结合离线色谱分析数据,对拉曼光谱进行建模分析和浓度预测。【结果】针对运动发酵单胞菌,首先实现拉曼分析仪对单一产品乙醇发酵过程的精准检测,其次基于多元变量分析,建立葡萄糖、乙醇和乳酸浓度变化的预测模型,实现对发酵过程中各成分浓度变化的准确有效分析。【结论】成功建立了一种评价资源微生物尤其是工业菌株发酵液多种组分的拉曼光谱分析方法。该方法为运动发酵单胞菌等工业菌株利用多组分底物工业化生产不同产物的实时检测,以及其他微生物尤其工业菌株的选育和过程优化提供了新方法。

    Abstract:

    Microbial fermentation is a process of substrate transformation by cell metabolism. In order to improve the yield of target products, we need to analyze the dynamic characteristics of microbial fermentation in a real-time manner so as to optimize the fermentation process. As a promising inline process analysis technology, Raman spectroscopy can achieve accurate monitoring under the in-situ conditions without causing microbial pollution and help optimize the microbial fermentation process. [Objective] To develop the prediction models with the inline Raman measurement technology and evaluate model performance so as to accurately monitor the concentration changes of glucose, xylose, ethanol, and lactic acid in the whole fermentation process of Zymomonas mobilis. [Methods] Raman spectra for multiple components in the fermentation process of Z. mobilis were collected in situ by the immersion probe, and then the partial least square method was adopted to conduct spectral processing and multivariate data analysis. The multivariate models were developed via the combination of Raman spectra with the HPLC data and then used to predict the concentrations of multiple components in the fermentation broth. [Results] The established models accurately measured the single products in the fermentation broth of Z. mobilis. Then, the prediction models for the concentrations of glucose, ethanol, and lactic acid were developed through multivariate analysis and validated, which can be used for real-time accurate determination of multiple components in the fermentation process. [Conclusion] We successfully established a Raman spectral analysis method for monitoring multiple chemicals in the fermentation broth. This is a promising technology for real-time monitoring of multiple substrates and products in industrial fermentation and can be used for strain development and process optimization of microorganisms.

    参考文献
    [1] Beutel S, Henkel S. In situ sensor techniques in modern bioprocess monitoring. Applied Microbiology and Biotechnology, 2011, 91(6): 1493–1505.
    [2] Rathore AS, Mishra S, Nikita S, Priyanka P. Bioprocess control: current progress and future perspectives. Life, 2021, 11(6): 557.
    [3] Claßen J, Aupert F, Reardon KF, Solle D, Scheper T. Spectroscopic sensors for in-line bioprocess monitoring in research and pharmaceutical industrial application. Analytical and Bioanalytical Chemistry, 2017, 409(3): 651–666.
    [4] Karim MN, Rivera SL. Artificial neural networks in bioprocess state estimation. Advances in Biochemical Engineering/Biotechnology, 1992, 46: 1–33.
    [5] Veale EL, Irudayaraj J, Demirci A. An on-line approach to monitor ethanol fermentation using FTIR spectroscopy. Biotechnology Progress, 2007, 23(2): 494–500.
    [6] Cozzolino D, Parker M, Dambergs RG, Herderich M, Gishen M. Chemometrics and visible-near infrared spectroscopic monitoring of red wine fermentation in a pilot scale. Biotechnology and Bioengineering, 2006, 95(6): 1101–1107.
    [7] Skibsted E, Lindemann C, Roca C, Olsson L. On-line bioprocess monitoring with a multi-wavelength fluorescence sensor using multivariate calibration. Journal of Biotechnology, 2001, 88(1): 47–57.
    [8] Esmonde-White KA, Cuellar M, Uerpmann C, Lenain B, Lewis IR. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing. Analytical and Bioanalytical Chemistry, 2017, 409(3): 637–649.
    [9] Hirsch E, Pataki H, Domján J, Farkas A, Vass P, Fehér C, Barta Z, Nagy ZK, Marosi GJ, Csontos I. Inline noninvasive Raman monitoring and feedback control of glucose concentration during ethanol fermentation. Biotechnology Progress, 2019, 35(5): e2848.
    [10] Heidari Baladehi M, Hekmatara M, HeYH, Bhaskar Y, Wang ZB, Liu L, Ji YT, Xu J. Culture-free identification and metabolic profiling of microalgal single cells via ensemble learning of ramanomes. Analytical Chemistry, 2021, 93(25): 8872–8880.
    [11] Shaw AD, Kaderbhai N, Jones A, Woodward AM, Goodacre R, Rowland JJ, Kell D. Noninvasive, on-line monitoring of the biotransformation by yeast of glucose to ethanol using dispersive Raman spectroscopy and chemometrics. Applied Spectroscopy, 1999, 53(11): 1419–1428.
    [12] Baradez MO, Biziato D, Hassan E, Marshall D. Application of Raman spectroscopy and univariate modelling as a process analytical technology for cell therapy bioprocessing. Frontiers in Medicine, 2018, 5: 47.
    [13] Wang QY, Li ZG, Ma ZH, Liang LQ. Real time monitoring of multiple components in wine fermentation using an on-line auto-calibration Raman spectroscopy. Sensors and Actuators B: Chemical, 2014, 202: 426–432.
    [14] 杨永富, 耿碧男, 宋皓月, 何桥宁, 何明雄, 鲍杰, 白凤武, 杨世辉. 运动发酵单胞菌底盘细胞研究现状及展望. 合成生物学, 2021, 2(1): 59–90. Yang YF, Geng BN, Song HY, He QN, He MX, Bao J, Bai FW, Yang SH. Progress and perspectives on developing Zymomonas mobilis as a chassis cell. Synthetic Biology Journal, 2021, 2(1): 59–90. (in Chinese)
    [15] Zhang K, Lu XX, Li Y, Jiang XB, Liu L, Wang HL. New technologies provide more metabolic engineering strategies for bioethanol production in Zymomonas mobilis. Applied Microbiology and Biotechnology, 2019, 103(5): 2087–2099.
    [16] Lou JY, Wang JW, Yang YF, Yang Q, Li RX, Hu MM, He QN, Du J, Wang X, Li M, Yang SH. Development and characterization of efficient xylose utilization strains of Zymomonas mobilis. Biotechnology for Biofuels, 2021, 14(1): 231.
    [17] Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S. Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science, 1995, 267: 240–243.
    [18] Schalk R, Braun F, Frank R,Rädle M, Gretz N, Methner FJ, Beuermann T. Non-contact Raman spectroscopy for in-line monitoring of glucose and ethanol during yeast fermentations. Bioprocess and Biosystems Engineering, 2017, 40(10): 1519–1527.
    [19] Iversen JA, Berg RW, Ahring BK. Quantitative monitoring of yeast fermentation using Raman spectroscopy. Analytical and Bioanalytical Chemistry, 2014, 406(20): 4911–4919.
    [20] Ewanick SM, Thompson WJ, Marquardt BJ, Bura R. Real-time understanding of lignocellulosic bioethanol fermentation by Raman spectroscopy. Biotechnology for Biofuels, 2013, 6(1): 28.
    [21] Gray SR, Peretti SW, Lamb HH. Real-time monitoring of high-gravity corn mash fermentation using in situ Raman spectroscopy. Biotechnology and Bioengineering, 2013, 110(6): 1654–1662.
    [22] Graf A, Woodhams A, Nelson M, Richardson DD, Short SM, Brower M, Hoehse M. Automated data generation for Raman spectroscopy calibrations in multi-parallel mini bioreactors. Sensors: Basel, Switzerland, 2022, 22(9): 3397.
    [23] Lee HLT, Boccazzi P, Gorret N, Ram RJ, Sinskey AJ. In situ bioprocess monitoring of Escherichia coli bioreactions using Raman spectroscopy. Vibrational Spectroscopy, 2004, 35(1/2): 131–137.
    [24] Kekkonen J, Talala T, Nissinen J, Nissinen I. On the spectral quality of time-resolved CMOS SPAD-based Raman spectroscopy with high fluorescence backgrounds. IEEE Sensors Journal, 2020, 20(9): 4635–4645.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

鲍伟威,纪凯迪,胡蜜蜜,娄吉芸,彭祺群,李震,王霞,阮银兰,杨世辉. 拉曼光谱分析技术在资源微生物发酵性能评价中的应用[J]. 微生物学报, 2022, 62(11): 4262-4272

复制
分享
文章指标
  • 点击次数:801
  • 下载次数: 1626
  • HTML阅读次数: 1471
  • 引用次数: 0
历史
  • 收稿日期:2022-10-10
  • 最后修改日期:2022-10-26
  • 在线发布日期: 2022-11-11
  • 出版日期: 2022-11-04
文章二维码