致病性葡萄球菌cfr基因介导的多重耐药机制研究进展
作者:
基金项目:

国家重点研发计划(2019YFC1606300);广东省重点实验室(2020B121201009);广东省科学院创新发展专项(2020GDASYL-20200103026);广东省科学院实施创新驱动发展能力建设专项(2019GDASYL-0201001)


Mechanism of cfr gene-mediated multiple drug resistance in pathogenic Staphylococcus
Author:
  • KOU Xiuying

    KOU Xiuying

    Infinitus (China) Co., Ltd., Guangzhou 510405, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Feng

    ZHANG Feng

    Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WU Shi

    WU Shi

    Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Ling

    CHEN Ling

    Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Jumei

    ZHANG Jumei

    Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WU Qingping

    WU Qingping

    Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [124]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    葡萄球菌是临床常见致病菌及食源性致病菌,可在食品原料加工、包装及运输过程中污染食品,引起人体多种严重感染,其耐药性的不断增强对公共卫生安全产生了重大的威胁。葡萄球菌中cfr (chloramphenicol-florfenicol resistance)基因编码的甲基转移酶,可引起细菌核糖体RNA的甲基化,从而阻碍或减弱多种化学结构不同的抗生素与肽基转移酶活性中心(peptidyl transferase center,PTC)的结合,导致葡萄球菌多重耐药表型的出现。噁唑烷酮类药物−利奈唑胺是继万古霉素后治疗耐药革兰氏阳性菌所致感染的最后一道防线,cfr基因的出现大大加速了利奈唑胺耐药性的传播。cfr基因广泛分布于多种致病性葡萄球菌中,cfr基因与各类型可转移元件(质粒、转座子和整合相关元件等)密切关联的遗传环境是其广泛传播的结构基础。在cfr基因水平传播的过程中,食源性致病葡萄球菌作为中间者扮演着重要的角色。本文就近年来国内外对致病性葡萄球菌中cfr基因的分布状况、耐药机制、遗传环境、传播机制等进行综述,以期为防控致病性葡萄球菌的传播提供参考,以遏制多重耐药菌的进一步传播。

    Abstract:

    The foodborne pathogenic Staphylococcus is common in clinical settings. It contaminates food during the raw material processing, packaging, and transportation, thus causing a variety of serious human infections. However, the drug resistance of this species has been on the rise, posing a huge threat to public health. The methyltransferase encoded by the cfr (chloramphenicol-florfenicol resistance) gene in Staphylococcus can cause methylation of bacterial ribosomal RNA, thus blocking or weakening the binding between multiple antibiotics with different chemical structures and peptidyl transferase center (PTC). This explains the development of multiple drug resistance in this species. Linezolid, an oxazolidone, is regarded as the last line of defense after vancomycin in the treatment of infections caused by drug-resistant Gram-positive bacteria. cfr gene accelerates the spread of linezolid resistance. This gene is ubiquitous in a variety of pathogenic Staphylococcus bacteria and the close relationship of the gene with various mobile elements (plasmids, transposons, integration-related elements, etc.) is the structural basis for its wide spread. In the horizontal transfer of cfr gene, foodborne pathogenic Staphylococcus plays an important role as an intermediary. This study reviews the distribution, resistance mechanism, genetic environment, and transfer mechanism of cfr gene in pathogenic Staphylococcus, which is expected provide a reference for prevention and control of the spread of pathogenic Staphylococcus and the control of further spread of multidrug resistant bacteria.

    参考文献
    [1] Chambers HF, Deleo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nature Reviews Microbiology, 2009, 7(9): 629–641.
    [2] Papadopoulos P, Papadopoulos T, Angelidis AS, Boukouvala E, Zdragas A, Papa AN, Hadjichristodoulou C, Sergelidis D. Prevalence of Staphylococcus aureus and of methicillin-resistant S. aureus (MRSA) along the production chain of dairy products in north-western Greece. Food Microbiology, 2018, 69: 43–50.
    [3] Spanu V, Spanu C, Virdis S, Cossu F, Scarano C, De Santis EPL. Virulence factors and genetic variability of Staphylococcus aureus strains isolated from raw sheep’s milk cheese. International Journal of Food Microbiology, 2012, 153(1/2): 53–57.
    [4] Kadariya J, Smith TC, Thapaliya D. Staphylococcus aureus and staphylococcal food-borne disease: an ongoing challenge in public health. BioMed Research International, 2014, 2014: 827965.
    [5] Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C. An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnology Advances, 2010, 28(2): 232–254.
    [6] O’Neill J. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Review on Antimicrobial Resistance, 2014: 1–16.
    [7] Shankar PR. Antimicrobial resistance: global report on surveillance. Australasian Medical Journal, 2014, 7: 237.
    [8] Hampton T. Report reveals scope of US antibiotic resistance threat. Journal of the American Medical Association, 2013, 310(16): 1661–1663.
    [9] Govindaraj Vaithinathan A, Vanitha A. WHO global priority pathogens list on antibiotic resistance: an urgent need for action to integrate One Health data. Perspectives in Public Health, 2018, 138(2): 87–88.
    [10] Wilson DN, Schluenzen F, Harms JM, Starosta AL, Connell SR, Fucini P. The oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect tRNA positioning. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(36): 13339–13344
    [11] Schwarz S, Werckenthin C, Kehrenberg C. Identification of a plasmid-borne chloramphenicol-florfenicol resistance gene in Staphylococcus sciuri. Antimicrobial Agents and Chemotherapy, 2000, 44(9): 2530–2533.
    [12] Bassetti M, Baguneid M, Bouza E, Dryden M, Nathwani D, Wilcox M. European perspective and update on the management of complicated skin and soft tissue infections due to methicillin-resistant Staphylococcus aureus after more than 10 years of experience with linezolid. Clinical Microbiology and Infection, 2014, 20: 3–18.
    [13] Peer M, Nasir R, Kakru D, Fomda B, Bashir G, Sheikh I. Sepsis due to linezolid resistant Staphylococcus cohnii and Staphylococcus kloosii : first reports of linezolid resistance in coagulase negative staphylococci from India. Indian Journal of Medical Microbiology, 2011, 29(1): 60–62.
    [14] Toh SM, Xiong LQ, Arias CA, Villegas MV, Lolans K, Quinn J, Mankin AS. Acquisition of a natural resistance gene renders a clinical strain of methicillin-resistant Staphylococcus aureus resistant to the synthetic antibiotic linezolid. Molecular Microbiology, 2007, 64(6): 1506–1514.
    [15] Long KS, Poehlsgaard J, Kehrenberg C, Schwarz S, Vester B. The Cfr rRNA methyltransferase confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A antibiotics. Antimicrobial Agents and Chemotherapy, 2006, 50(7): 2500–2505.
    [16] Smith LK, Mankin AS. Transcriptional and translational control of the mlr operon, which confers resistance to seven classes of protein synthesis inhibitors. Antimicrobial Agents and Chemotherapy, 2008, 52(5): 1703–1712.
    [17] Harms J, Schluenzen F, Zarivach R, Bashan A, Gat S, Agmon I, Bartels H, Franceschi F, Yonath A. High resolution structure of the large ribosomal subunit from a mesophilic Eubacterium. Cell, 2001, 107(5): 679–688.
    [18] Gutell RR, Larsen N, Woese CR. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiological Reviews, 1994, 58(1): 10–26.
    [19] Kehrenberg C, Schwarz S, Jacobsen L, Hansen LH, Vester B. A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503. Molecular Microbiology, 2005, 57(4): 1064–1073.
    [20] Giessing AMB, Jensen SS, Rasmussen A, Hansen LH, Gondela A, Long K, Vester B, Kirpekar F. Identification of 8-methyladenosine as the modification catalyzed by the radical SAM methyltransferase Cfr that confers antibiotic resistance in bacteria. RNA : New York, N Y, 2009, 15(2): 327–336.
    [21] Sofia HJ, Chen G, Hetzler BG, Reyes-Spindola JF, Miller NE. Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Research, 2001, 29(5): 1097–1106.
    [22] Yan F, LaMarre JM, Röhrich R, Wiesner J, Jomaa H, Mankin AS, Fujimori DG. RlmN and Cfr are radical SAM enzymes involved in methylation of ribosomal RNA. Journal of the American Chemical Society, 2010, 132(11): 3953–3964.
    [23] Witte W, Cuny C. Emergence and spread of Cfr-mediated multiresistance in staphylococci: an interdisciplinary challenge. Future Microbiology, 2011, 6(8): 925–931.
    [24] Shaw KJ, Barbachyn MR. The oxazolidinones: past, present, and future. Annals of the New York Academy of Sciences, 2011, 1241(1): 48–70.
    [25] Kehrenberg C, Schwarz S. Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates. Antimicrobial Agents and Chemotherapy, 2006, 50(4): 1156–1163.
    [26] Mendes RE, Deshpande LM, Castanheira M, DiPersio J, Saubolle MA, Jones RN. First report of Cfr-mediated resistance to linezolid in human staphylococcal clinical isolates recovered in the United States. Antimicrobial Agents and Chemotherapy, 2008, 52(6): 2244–2246.
    [27] Li SM, Zhou YF, Li L, Fang LX, Duan JH, Liu FR, Liang HQ, Wu YT, Gu WQ, Liao XP, Sun J, Xiong YQ, Liu YH. Characterization of the multi-drug resistance gene cfr in methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from animals and humans in China. Frontiers in Microbiology, 2018, 9: 2925.
    [28] Mendes RE, Deshpande LM, Bonilla HF, Schwarz S, Huband MD, Jones RN, Quinn JP. Dissemination of a pSCFS3-like cfr -carrying plasmid in Staphylococcus aureus and Staphylococcus epidermidis clinical isolates recovered from hospitals in Ohio. Antimicrobial Agents and Chemotherapy, 2013, 57(7): 2923–2928.
    [29] Liu Y, Wang Y, Wu CM, Shen ZQ, Schwarz S, Du XD, Dai L, Zhang WJ, Zhang QJ, Shen JZ. First report of the multidrug resistance gene cfr in Enterococcus faecalis of animal origin. Antimicrobial Agents and Chemotherapy, 2012, 56(3): 1650–1654.
    [30] Diaz L, Kiratisin P, Mendes RE, Panesso D, Singh KV, Arias CA. Transferable plasmid-mediated resistance to linezolid due to cfr in a human clinical isolate of Enterococcus faecalis. Antimicrobial Agents and Chemotherapy, 2012, 56(7): 3917–3922.
    [31] Liu Y, Wang Y, Schwarz S, Li Y, Shen ZQ, Zhang QJ, Wu CM, Shen JZ. Transferable multiresistance plasmids carrying cfr in Enterococcus spp. from swine and farm environment. Antimicrobial Agents and Chemotherapy, 2013, 57(1): 42–48.
    [32] Fang LX, Duan JH, Chen MY, Deng H, Liang HQ, Xiong YQ, Sun J, Liu YH, Liao XP. Prevalence of cfr in Enterococcus faecalis strains isolated from swine farms in China: predominated cfr -carrying pCPPF5-like plasmids conferring “non-linezolid resistance” phenotype. Infection, Genetics and Evolution, 2018, 62: 188–192.
    [33] Dai L, Wu CM, Wang MG, Wang Y, Wang Y, Huang SY, Xia LN, Li BB, Shen JZ. First report of the multidrug resistance gene cfr and the phenicol resistance gene fexA in a Bacillus strain from swine feces. Antimicrobial Agents and Chemotherapy, 2010, 54(9): 3953–3955.
    [34] Wang Y, Schwarz S, Shen Z, Zhang W, Qi J, Liu Y, He T, Shen J, Wu C. Co-location of the multiresistance gene cfr and the novel streptomycin resistance gene aadY on a small plasmid in a porcine Bacillus strain. Journal of Antimicrobial Chemotherapy, 2012, 67(6): 1547–1549.
    [35] Wang Y, Wang Y, Wu CM, Schwarz S, Shen Z, Zhang W, Zhang Q, Shen JZ. Detection of the staphylococcal multiresistance gene cfr in Proteus vulgaris of food animal origin. Journal of Antimicrobial Chemotherapy, 2011, 66(11): 2521–2526.
    [36] Wang Y, He T, Schwarz S, Zhou D, Shen Z, Wu C, Wang Y, Ma L, Zhang Q, Shen J. Detection of the staphylococcal multiresistance gene cfr in Escherichia coli of domestic-animal origin. Journal of Antimicrobial Chemotherapy, 2012, 67(5): 1094–1098.
    [37] Wang Y, Wang Y, Schwarz S, Shen Z, Zhou N, Lin J, Wu C, Shen J. Detection of the staphylococcal multiresistance gene cfr in Macrococcus caseolyticus and Jeotgalicoccus pinnipedialis. Journal of Antimicrobial Chemotherapy, 2012, 67(8): 1824–1827.
    [38] Wang Y, Li DX, Song L, Liu Y, He T, Liu HB, Wu CM, Schwarz S, Shen JZ. First report of the multiresistance gene cfr in Streptococcus suis. Antimicrobial Agents and Chemotherapy, 2013, 57(8): 4061–4063.
    [39] Chen YP, Lei CW, Zuo L, Kong LH, Kang ZZ, Zeng JX, Zhang XZ, Wang HN. A novel cfr -carrying Tn7 transposon derivative characterized in Morganella morganii of swine origin in China. Journal of Antimicrobial Chemotherapy, 2019, 74(3): 603–606.
    [40] Cuny C, Arnold P, Hermes J, Eckmanns T, Mehraj J, Schoenfelder S, Ziebuhr W, Zhao Q, Wang Y, Feßler AT, Krause G, Schwarz S, Witte W. Occurrence of cfr -mediated multiresistance in staphylococci from veal calves and pigs, from humans at the corresponding farms, and from veterinarians and their family members. Veterinary Microbiology, 2017, 200: 88–94.
    [41] Locke JB, Rahawi S, Lamarre J, Mankin AS, Shaw KJ. Genetic environment and stability of cfr in methicillin-resistant Staphylococcus aureus CM05. Antimicrobial Agents and Chemotherapy, 2012, 56(1): 332–340.
    [42] Zhang F, Wu S, Huang JH, Yang RS, Zhang JM, Lei T, Dai JS, Ding Y, Xue L, Wang J, Chen MT, Wu QP. Presence and characterization of a novel cfr -carrying tn 558 transposon derivative in Staphylococcus delphini isolated from retail food. Frontiers in Microbiology, 2021, 11: 598990.
    [43] Song YJ, Lv Y, Cui LQ, Li Y, Ke Q, Zhao YX. Cfr-mediated linezolid-resistant clinical isolates of methicillin-resistant coagulase-negative staphylococci from China. Journal of Global Antimicrobial Resistance, 2017, 8: 1–5.
    [44] Schwarz S, Zhang WJ, Du XD, Krüger H, Feßler AT, Ma SZ, Zhu Y, Wu CM, Shen JZ, Wang Y. Mobile oxazolidinone resistance genes in Gram-positive and Gram-negative bacteria. Clinical Microbiology Reviews, 2021, 34(3): e0018820.
    [45] Kehrenberg C, Ojo KK, Schwarz S. Nucleotide sequence and organization of the multiresistance plasmid pSCFS1 from Staphylococcus sciuri. Journal of Antimicrobial Chemotherapy, 2004, 54(5): 936–939.
    [46] Locke JB, Zuill DE, Scharn CR, Deane J, Sahm DF, Denys GA, Goering RV, Shaw KJ. Linezolid-resistant Staphylococcus aureus strain 1128105, the first known clinical isolate possessing the cfr multidrug resistance gene. Antimicrobial Agents and Chemotherapy, 2014, 58(11): 6592–6598.
    [47] Arias CA, Vallejo M, Reyes J, Panesso D, Moreno J, Castañeda E, Villegas MV, Murray BE, Quinn JP. Clinical and microbiological aspects of linezolid resistance mediated by the cfr gene encoding a 23S rRNA methyltransferase. Journal of Clinical Microbiology, 2008, 46(3): 892–896.
    [48] Kehrenberg C, Aarestrup FM, Schwarz S. IS21-558 insertion sequences are involved in the mobility of the multiresistance gene cfr. Antimicrobial Agents and Chemotherapy, 2007, 51(2): 483–487.
    [49] LaMarre J, Mendes RE, Szal T, Schwarz S, Jones RN, Mankin AS. The genetic environment of the cfr gene and the presence of other mechanisms account for the very high linezolid resistance of Staphylococcus epidermidis isolate 426-3147L. Antimicrobial Agents and Chemotherapy, 2013, 57(3): 1173–1179.
    [50] Morales G, Picazo JJ, Baos E, Candel FJ, Arribi A, Peláez B, Andrade R, De La Torre MÁ, Fereres J, Sánchez-García M. Resistance to linezolid is mediated by the cfr gene in the first report of an outbreak of linezolid-resistant Staphylococcus aureus. Clinical Infectious Diseases, 2010, 50(6): 821–825.
    [51] Lozano C, Ruiz-García M, Gómez-Sanz E, López-García P, Royo-García G, Zarazaga M, Torres C. Characterization of a cfr -positive methicillin-resistant Staphylococcus epidermidis strain of the lineage ST22 implicated in a life-threatening human infection. Diagnostic Microbiology and Infectious Disease, 2012, 73(4): 380–382.
    [52] Baos E, Candel FJ, Merino P, Pena I, Picazo JJ. Characterization and monitoring of linezolid-resistant clinical isolates of Staphylococcus epidermidis in an intensive care unit 4 years after an outbreak of infection by cfr -mediated linezolid-resistant Staphylococcus aureus. Diagnostic Microbiology and Infectious Disease, 2013, 76(3): 325–329.
    [53] Bongiorno D, Campanile F, Mongelli G, Baldi MT, Provenzani R, Reali S, Lo Russo C, Santagati M, Stefani S. DNA methylase modifications and other linezolid resistance mutations in coagulase-negative staphylococci in Italy. Journal of Antimicrobial Chemotherapy, 2010, 65(11): 2336–2340.
    [54] Mendes RE, Deshpande L, Rodriguez-Noriega E, Ross JE, Jones RN, Morfin-Otero R. First report of Staphylococcal clinical isolates in Mexico with linezolid resistance caused by cfr : evidence of in vivo cfr mobilization. Journal of Clinical Microbiology, 2010, 48(8): 3041–3043.
    [55] Cui LQ, Wang Y, Li Y, He T, Schwarz S, Ding YJ, Shen JZ, Lv Y. Cfr-mediated linezolid-resistance among methicillin-resistant coagulase-negative staphylococci from infections of humans. PLoS One, 2013, 8(2): e57096.
    [56] Gopegui ER, Juan C, Zamorano L, Pérez JL, Oliver A. Transferable multidrug resistance plasmid carrying cfr associated with Tet(L), ant(4ʹ)-Ia, and dfrK genes from a clinical methicillin-resistant Staphylococcus aureus ST125 strain. Antimicrobial Agents and Chemotherapy, 2012, 56(4): 2139–2142.
    [57] Ruiz-Ripa L, Feßler AT, Hanke D, Sanz S, Olarte C, Mama OM, Eichhorn I, Schwarz S, Torres C. Coagulase-negative staphylococci carrying cfr and pvl genes, and MRSA/MSSA-CC398 in the swine farm environment. Veterinary Microbiology, 2020, 243: 108631.
    [58] Brenciani A, Morroni G, Pollini S, Tiberi E, Mingoia M, Varaldo PE, Rossolini GM, Giovanetti E. Characterization of novel conjugative multiresistance plasmids carrying cfr from linezolid-resistant Staphylococcus epidermidis clinical isolates from Italy. Journal of Antimicrobial Chemotherapy, 2016, 71(2): 307–313.
    [59] Wang XM, Zhang WJ, Schwarz S, Yu SY, Liu H, Si W, Zhang RM, Liu S. Methicillin-resistant Staphylococcus aureus ST9 from a case of bovine mastitis carries the genes cfr and erm (A) on a small plasmid. Journal of Antimicrobial Chemotherapy, 2012, 67(5): 1287–1289.
    [60] Wang Y, Zhang WJ, Wang J, Wu CM, Shen ZQ, Fu X, Yan Y, Zhang QJ, Schwarz S, Shen JZ. Distribution of the multidrug resistance gene cfr in Staphylococcus species isolates from swine farms in China. Antimicrobial Agents and Chemotherapy, 2012, 56(3): 1485–1490.
    [61] Locke JB, Zuill DE, Scharn CR, Deane J, Sahm DF, Goering RV, Jenkins SG, Shaw KJ. Identification and characterization of linezolid-resistant cfr -positive Staphylococcus aureus USA300 isolates from a New York city medical center. Antimicrobial Agents and Chemotherapy, 2014, 58(11): 6949–6952.
    [62] Couto N, Belas A, Rodrigues C, Schwarz S, Pomba C. Acquisition of the fexA and cfr genes in Staphylococcus pseudintermedius during florfenicol treatment of canine pyoderma. Journal of Global Antimicrobial Resistance, 2016, 7: 126–127.
    [63] Yang XJ, Chen Y, Yang Q, Qu TT, Liu LL, Wang HP, Yu YS. Emergence of cfr -harbouring coagulase-negative staphylococci among patients receiving linezolid therapy in two hospitals in China. Journal of Medical Microbiology, 2013, 62(Pt 6): 845–850.
    [64] Wang Y, He T, Schwarz S, Zhao Q, Shen ZQ, Wu CM, Shen JZ. Multidrug resistance gene cfr in methicillin-resistant coagulase-negative staphylococci from chickens, ducks, and pigs in China. International Journal of Medical Microbiology, 2013, 303(2): 84–87.
    [65] Wang J, Lin DC, Guo XM, Wei HK, Liu XQ, Chen XJ, Guo JY, Zeng ZL, Liu JH. Distribution of the multidrug resistance gene cfr in Staphylococcus isolates from pigs, workers, and the environment of a hog market and a slaughterhouse in Guangzhou, China. Foodborne Pathogens and Disease, 2015, 12(7): 598–605.
    [66] Bender J, Strommenger B, Steglich M, Zimmermann O, Fenner I, Lensing C, Dagwadordsch U, Kekulé AS, Werner G, Layer F. Linezolid resistance in clinical isolates of Staphylococcus epidermidis from German hospitals and characterization of two cfr -carrying plasmids. Journal of Antimicrobial Chemotherapy, 2015, 70(6): 1630–1638.
    [67] Shore AC, Lazaris A, Kinnevey PM, Brennan OM, Brennan GI, O’Connell B, Feßler AT, Schwarz S, Coleman DC. First report of cfr -carrying plasmids in the pandemic sequence type 22 methicillin-resistant Staphylococcus aureus staphylococcal cassette chromosome mec type IV clone. Antimicrobial Agents and Chemotherapy, 2016, 60(5): 3007–3015.
    [68] Gales AC, Deshpande LM, De Souza AG, Pignatari ACC, Mendes RE. MSSA ST398/t034 carrying a plasmid-mediated cfr and erm (B) in Brazil. Journal of Antimicrobial Chemotherapy, 2015, 70(1): 303–305.
    [69] Silva V, Almeida F, Silva A, Correia S, Carvalho JA, Castro AP, Ferreira E, Manageiro V, Caniça M, Igrejas G, Poeta P. First report of linezolid-resistant cfr -positive methicillin-resistant Staphylococcus aureus in humans in Portugal. Journal of Global Antimicrobial Resistance, 2019, 17: 323–325.
    [70] Chen HB, Wu WY, Ni M, Liu YM, Zhang JX, Xia F, He WQ, Wang Q, Wang ZW, Cao B, Wang H. Linezolid-resistant clinical isolates of enterococci and Staphylococcus cohnii from a multicentre study in China: molecular epidemiology and resistance mechanisms. International Journal of Antimicrobial Agents, 2013, 42(4): 317–321.
    [71] Xu HT, Tian R, Li YM, Chen DK, Liu YL, Hu YJ, Xiao F. Ribosomal protein L3 mutations are associated with cfr -mediated linezolid resistance in clinical isolates of Staphylococcus cohnii. Current Microbiology, 2015, 70(6): 840–845.
    [72] Zhou WQ, Niu DM, Cao XL, Ning MZ, Zhang ZF, Shen H, Zhang K. Clonal dissemination of linezolid-resistant Staphylococcus capitis with G2603T mutation in domain V of the 23S rRNA and the cfr gene at a tertiary care hospital in China. BMC Infectious Diseases, 2015, 15: 97.
    [73] Kang HY, Moon DC, Mechesso AF, Choi JH, Kim SJ, Song HJ, Kim MH, Yoon SS, Lim SK. Emergence of cfr -mediated linezolid resistance in Staphylococcus aureus isolated from pig carcasses. Antibiotics : Basel, Switzerland, 2020, 9(11): 769.
    [74] O’Connor C, Powell J, Finnegan C, O’Gorman A, Barrett S, Hopkins KL, Pichon B, Hill R, Power L, Woodford N, Coffey JC, Kearns A, O’Connell NH, Dunne CP. Incidence, management and outcomes of the first cfr -mediated linezolid-resistant Staphylococcus epidermidis outbreak in a tertiary referral centre in the Republic of Ireland. Journal of Hospital Infection, 2015, 90(4): 316–321.
    [75] Cai JC, Hu YY, Zhou HW, Chen GX, Zhang R. Dissemination of the same cfr -carrying plasmid among methicillin-resistant Staphylococcus aureus and coagulase-negative staphylococcal isolates in China. Antimicrobial Agents and Chemotherapy, 2015, 59(6): 3669–3671.
    [76] Wu DD, Wang HP, Zhu FT, Jiang SN, Sun L, Zhao F, Yu YS, Chen Y. Characterization of an ST5-SCCmec II-t311 methicillin-resistant Staphylococcus aureus strain with a widespread cfr -positive plasmid. Journal of Infection and Chemotherapy, 2020, 26(7): 699–705.
    [77] Li DX, Wu CM, Wang Y, Fan R, Schwarz S, Zhang SX. Identification of multiresistance gene cfr in methicillin-resistant Staphylococcus aureus from pigs: plasmid location and integration into a staphylococcal cassette chromosome mec complex. Antimicrobial Agents and Chemotherapy, 2015, 59(6): 3641–3644.
    [78] Li DX, Wang Y, Schwarz S, Cai JC, Fan R, Li J, Feßler AT, Zhang R, Wu CM, Shen JZ. Co-location of the oxazolidinone resistance genes o ptrA and cfr on a multiresistance plasmid from Staphylococcus sciuri. Journal of Antimicrobial Chemotherapy, 2016, 71(6): 1474–1478.
    [79] Liu XQ, Wang J, Li W, Zhao LQ, Lu Y, Liu JH, Zeng ZL. Distribution of cfr in Staphylococcus spp. and Escherichia coli strains from pig farms in China and characterization of a novel cfr -carrying F43: A-: B- plasmid. Frontiers in Microbiology, 2017, 8: 329.
    [80] Fessler AT, Calvo N, Gutierrez N, Munoz Bellido JL, Fajardo M, Garduno E, Monecke S, Ehricht R, Kadlec K, Schwarz S. Cfr-mediated linezolid resistance in methicillin-resistant Staphylococcus aureus and Staphylococcus haemolyticus associated with clinical infections in humans: two case reports. Journal of Antimicrobial Chemotherapy, 2014, 69(1): 268–270.
    [81] Lazaris A, Coleman DC, Kearns AM, Pichon B, Kinnevey PM, Earls MR, Boyle B, O’Connell B, Brennan GI, Shore AC. Novel multiresistance cfr plasmids in linezolid-resistant methicillin-resistant Staphylococcus epidermidis and vancomycin-resistant Enterococcus faecium (VRE) from a hospital outbreak: co-location of cfr and optrA in VRE. Journal of Antimicrobial Chemotherapy, 2017, 72(12): 3252–3257.
    [82] Rajan V, Kumar VGS, Gopal S. A cfr -positive clinical staphylococcal isolate from India with multiple mechanisms of linezolid-resistance. The Indian Journal of Medical Research, 2014, 139(3): 463–467.
    [83] Zeng ZL, Wei HK, Wang J, Lin DC, Liu XQ, Liu JH. High prevalence of Cfr-producing Staphylococcus species in retail meat in Guangzhou, China. BMC Microbiology, 2014, 14: 151.
    [84] Fan R, Li DX, Feßler AT, Wu CM, Schwarz S, Wang Y. Distribution of optrA and cfr in florfenicol-resistant Staphylococcus sciuri of pig origin. Veterinary Microbiology, 2017, 210: 43–48.
    [85] Antonelli A, D’Andrea MM, Galano A, Borchi B, Brenciani A, Vaggelli G, Cavallo A, Bartoloni A, Giovanetti E, Rossolini GM. Linezolid-resistant cfr -positive MRSA, Italy. The Journal of Antimicrobial Chemotherapy, 2016, 71(8): 2349–2351.
    [86] D’Andrea MM, Antonelli A, Brenciani A, Di Pilato V, Morroni G, Pollini S, Fioriti S, Giovanetti E, Rossolini GM. Characterization of Tn 6349, a novel mosaic transposon carrying poxtA, cfr and other resistance determinants, inserted in the chromosome of an ST5-MRSA-II strain of clinical origin. Journal of Antimicrobial Chemotherapy, 2019, 74(10): 2870–2875.
    [87] Liu BH, Lei CW, Zhang AY, Pan Y, Kong LH, Xiang R, Wang YX, Yang YX, Wang HN. Colocation of the multiresistance gene cfr and the fosfomycin resistance gene fosD on a novel plasmid in Staphylococcus arlettae from a chicken farm. Antimicrobial Agents and Chemotherapy, 2017, 61(12): e01388–17.
    [88] Zhang F, Wu S, Lei T, Wu QP, Zhang JM, Huang JH, Dai JS, Chen MT, Ding Y, Wang J, Wei XH, Zhang YX. Presence and characterization of methicillin-resistant Staphylococcus aureus co-carrying the multidrug resistance genes cfr and lsa (E) in retail food in China. International Journal of Food Microbiology, 2022, 363: 109512.
    [89] Nguyen LTT, Román F, Morikawa K, Trincado P, Marcos C, Rojo-Martín MD, Cafini F. Prevalence of pSCFS7-like vectors among cfr -positive staphylococcal population in Spain. International Journal of Antimicrobial Agents, 2018, 52(2): 305–306.
    [90] Jian JY, Chen L, Xie ZQ, Zhang M. Dissemination of cfr -mediated linezolid resistance among Staphylococcus species isolated from a teaching hospital in Beijing, China. The Journal of International Medical Research, 2018, 46(9): 3884–3889.
    [91] Wu CY, Zhang XY, Liang JL, Li QL, Lin HL, Lin CQ, Liu HM, Zhou DY, Lu W, Sun ZW, Lin X, Zhang HL, Li KW, Xu T, Bao QY, Lu JW. Characterization of florfenicol resistance genes in the coagulase-negative Staphylococcus (CoNS) isolates and genomic features of a multidrug-resistant Staphylococcus lentus strain H29. Antimicrobial Resistance and Infection Control, 2021, 10(1): 9.
    [92] Paridaens H, Coussement J, Argudín MA, Delaere B, Huang TD, Glupczynski Y, Denis O. Clinical case of cfr -positive MRSA CC398 in Belgium. European Journal of Clinical Microbiology & Infectious Diseases : Official Publication of the European Society of Clinical Microbiology, 2017, 36(8): 1527–1529.
    [93] Lee GY, Kim GB, Yang SJ. Co-occurrence of cfr -mediated linezolid-resistance in ST398 LA-MRSA and non-aureus staphylococci isolated from a pig farm. Veterinary Microbiology, 2022, 266: 109336.
    [94] Nguyen LTT, Nguyen KNT, Le PNTA, Cafini F, Pascoe B, Sheppard SK, Nguyen TB, Nguyen TPH, Nguyen TV, Pham TTK, Morikawa K, Nguyen DQ, Duong HX. The emergence of plasmid-borne cfr -mediated linezolid resistant-staphylococci in Vietnam. Journal of Global Antimicrobial Resistance, 2020, 22: 462–465.
    [95] Ruiz-Ripa L, Bellés-Bellés A, Fernández-Fernández R, García M, Vilaró A, Zarazaga M, Torres C. Linezolid-resistant MRSA-CC398 carrying the cfr gene, and MRSA-CC9 isolates from pigs with signs of infection in Spain. Journal of Applied Microbiology, 2021, 131(2): 615–622.
    [96] Fioriti S, Coccitto SN, Morroni G, Simoni S, Cinthi M, Magi G, Sante LD, Alvarez-Suarez JM, Mingoia M, Giovanetti E, Brenciani A. Detection of a chromosomal truncated cfr gene in a linezolid-susceptible LA- MRSA ST398 isolate of porcine origin, Italy. Journal of Global Antimicrobial Resistance, 2021, 26: 199–201.
    [97] Ruiz-Ripa L, Bellés A, García M, Torres C. Detection of a cfr -positive MRSA CC398 strain in a pig farmer in Spain. Enfermedades Infecciosas y Microbiologia Clinica: English Ed, 2021, 39(3): 139–141.
    [98] He T, Wang Y, Schwarz S, Zhao Q, Shen JZ, Wu CM. Genetic environment of the multi-resistance gene cfr in methicillin-resistant coagulase-negative staphylococci from chickens, ducks, and pigs in China. International Journal of Medical Microbiology, 2014, 304(3/4): 257–261.
    [99] Shore AC, Brennan OM, Ehricht R, Monecke S, Schwarz S, Slickers P, Coleman DC. Identification and characterization of the multidrug resistance gene cfr in a panton-valentine leukocidin-positive sequence type 8 methicillin-resistant Staphylococcus aureus IVa (USA300) isolate. Antimicrobial Agents and Chemotherapy, 2010, 54(12): 4978–4984.
    [100] Brenciani A, Morroni G, Mingoia M, Varaldo PE, Giovanetti E. Stability of the cargo regions of the cfr -carrying, multiresistance plasmid pSP01 from Staphylococcus epidermidis. International Journal of Medical Microbiology, 2016, 306(8): 717–721.
    [101] Kehrenberg C, Schwarz S. Florfenicol-chloramphenicol exporter gene fexA is part of the novel transposon Tn 558. Antimicrobial Agents and Chemotherapy, 2005, 49(2): 813–815.
    [102] Palmieri C, Mingoia M, Varaldo PE. Unconventional circularizable bacterial genetic structures carrying antibiotic resistance determinants. Antimicrobial Agents and Chemotherapy, 2013, 57(5): 2440–2441.
    [103] Harmer CJ, Moran RA, Hall RM. Movement of IS26-associated antibiotic resistance genes occurs via a translocatable unit that includes a single IS26 and preferentially inserts adjacent to another IS26. mBio, 2014, 5(5): e01801–14.
    [104] Harmer CJ, Hall RM. IS 26-mediated precise excision of the IS26-aphA1a translocatable unit. mBio, 2015, 6(6): e01866–15.
    [105] Stewart PR, Dubin DT, Chikramane SG, Inglis B, Matthews PR, Poston SM. IS 257 and small plasmid insertions in the mec region of the chromosome of Staphylococcus aureus. Plasmid, 1994, 31(1): 12–20.
    [106] Zhao Q, Wendlandt S, Li H, Li J, Wu CM, Shen JZ, Schwarz S, Wang Y. Identification of the novel lincosamide resistance gene lnu (E) truncated by IS Enfa5- cfr -IS Enfa5 insertion in Streptococcus suis : de novo synthesis and confirmation of functional activity in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2014, 58(3): 1785–1788.
    [107] Bonilla H, Huband M, Seidel J, Schmidt H, Lescoe M, McCurdy S, Lemmon M, Brennan L, Tait-Kamradt A, Puzniak L, Quinn J. Multicity outbreak of linezolid-resistant Staphylococcus epidermidis associated with clonal spread of a cfr -containing strain. Clinical Infectious Diseases, 2010, 51(7): 796–800.
    [108] Brijwal M, Dhawan B, Rawre J, Sebastian S, Kapil A. Clonal dissemination of linezolid-resistant Staphylococcus haemolyticus harbouring a G2576T mutation and the cfr gene in an Indian hospital. Journal of Medical Microbiology, 2016, 65(7): 698–700.
    [109] De Dios Caballero J, Pastor MD, Vindel A, Máiz L, Yagüe G, Salvador C, Cobo M, Morosini MI, Del Campo R, Cantón R, Group GEIFQS. Emergence of cfr -mediated linezolid resistance in a methicillin-resistant Staphylococcus aureus epidemic clone isolated from patients with cystic fibrosis. Antimicrobial Agents and Chemotherapy, 2015, 60(3): 1878–1882.
    [110] Cafini F, Nguyen LTT, Higashide M, Román F, Prieto J, Morikawa K. Horizontal gene transmission of the cfr gene to MRSA and Enterococcus : role of Staphylococcus epidermidis as a reservoir and alternative pathway for the spread of linezolid resistance. Journal of Antimicrobial Chemotherapy, 2016, 71(3): 587–592.
    [111] Leverstein-Van Hall MA, Dierikx CM, Cohen Stuart J, Voets GM, Van Den Munckhof MP, Van Essen-Zandbergen A, Platteel T, Fluit AC, Van De Sande-Bruinsma N, Scharinga J, Bonten MJM, Mevius DJ. On behalf of the national ESBL surveillance group. Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clinical Microbiology and Infection, 2011, 17(6): 873–880.
    [112] Stojković V, Ulate MF, Hidalgo-Villeda F, Aguilar E, Monge-Cascante C, Pizarro-Guajardo M, Tsai K, Tzoc E, Camorlinga M, Paredes-Sabja D, Quesada-Gómez C, Fujimori DG, Rodríguez C. Cfr (B), cfr (C), and a new cfr -like gene, cfr (E), in Clostridium difficile strains recovered across Latin America. Antimicrobial Agents and Chemotherapy, 2019, 64(1): e01074–19.
    [113] Marín M, Martín A, Alcalá L, Cercenado E, Iglesias C, Reigadas E, Bouza E. Clostridium difficile isolates with high linezolid MICs harbor the multiresistance gene cfr. Antimicrobial Agents and Chemotherapy, 2015, 59(1): 586–589.
    [114] Schwarz S, Wang Y. Nomenclature and functionality of the so-called cfr gene from Clostridium difficile. Antimicrobial Agents and Chemotherapy, 2015, 59(4): 2476–2477.
    [115] Hansen LH, Vester B. A cfr -like gene from Clostridium difficile confers multiple antibiotic resistance by the same mechanism as the cfr gene. Antimicrobial Agents and Chemotherapy, 2015, 59(9): 5841–5843.
    [116] Bender JK, Fleige C, Klare I, Fiedler S, Mischnik A, Mutters NT, Dingle KE, Werner G. Detection of a cfr (B) variant in German Enterococcus faecium clinical isolates and the impact on linezolid resistance in Enterococcus spp.. PLoS One, 2016, 11(11): e0167042.
    [117] Candela T, Marvaud JC, Nguyen TK, Lambert T. A cfr -like gene cfr (C) conferring linezolid resistance is common in Clostridium difficile. International Journal of Antimicrobial Agents, 2017, 50(3): 496–500.
    [118] Tang YZ, Dai L, Sahin O, Wu ZW, Liu MY, Zhang QJ. Emergence of a plasmid-borne multidrug resistance gene cfr (C) in foodborne pathogen Campylobacter. Journal of Antimicrobial Chemotherapy, 2017, 72(6): 1581–1588.
    [119] Pang S, Boan P, Lee T, Gangatharan S, Tan SJ, Daley D, Lee YT, Coombs GW. Linezolid-resistant ST872 Enteroccocus faecium harbouring optrA and cfr (D) oxazolidinone resistance genes. International Journal of Antimicrobial Agents, 2020, 55(1): 105831.
    [120] LaMarre JM, Locke JB, Shaw KJ, Mankin AS. Low fitness cost of the multidrug resistance gene cfr. Antimicrobial Agents and Chemotherapy, 2011, 55(8): 3714–3719
    [121] Bikard D, Euler CW, Jiang WY, Nussenzweig PM, Goldberg GW, Duportet X, Fischetti VA, Marraffini LA. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nature Biotechnology, 2014, 32(11): 1146–1150.
    [122] Hao MJ, He YZ, Zhang HF, Liao XP, Liu YH, Sun J, Du H, Kreiswirth BN, Chen L. CRISPR-Cas9-mediated carbapenemase gene and plasmid curing in carbapenem-resistant Enterobacteriaceae. Antimicrobial Agents and Chemotherapy, 2020, 64(9): e00843–e00820.
    [123] Gondil VS, Harjai K, Chhibber S. Endolysins as emerging alternative therapeutic agents to counter drug-resistant infections. International Journal of Antimicrobial Agents, 2020, 55(2): 105844.
    [124] Kiga K, Tan XE, Ibarra-Chávez R, Watanabe S, Aiba Y, Sato’o Y, Li FY, Sasahara T, Cui BT, Kawauchi M, Boonsiri T, Thitiananpakorn K, Taki Y, Azam AH, Suzuki M, Penadés JR, Cui LZ. Development of CRISPR-Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria. Nature Communications, 2020, 11: 2934
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

寇秀颖,张峰,吴诗,陈玲,张菊梅,吴清平. 致病性葡萄球菌cfr基因介导的多重耐药机制研究进展[J]. 微生物学报, 2022, 62(11): 4305-4323

复制
分享
文章指标
  • 点击次数:567
  • 下载次数: 866
  • HTML阅读次数: 744
  • 引用次数: 0
历史
  • 收稿日期:2022-03-09
  • 最后修改日期:2022-05-17
  • 在线发布日期: 2022-11-11
  • 出版日期: 2022-11-04
文章二维码