短尾噬菌体识别宿主机制的研究进展
作者:
基金项目:

广东省基础与应用基础重大项目(2020B0301030005);国家自然科学基金(31730070);广东省微生物安全与健康重点实验室基金(2020B121201009)


Progress in the host recognition mechanisms of Podoviridae phages
Author:
  • LI Na

    LI Na

    State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China;Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YUAN Xiaoming

    YUAN Xiaoming

    State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China;Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Juan

    WANG Juan

    College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WU Qingping

    WU Qingping

    State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • DING Yu

    DING Yu

    Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [65]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    噬菌体可以作为抗生素的替代物,用于致病菌的防控和治疗。有尾噬菌体是最常见的噬菌体类型,可以根据尾部形态的不同分为短尾噬菌体、肌尾噬菌体和长尾噬菌体3类。不同噬菌体间不仅具有明显的形态差异,其对宿主细菌的识别机制也不相同。短尾噬菌体由于其较小的基因组长度和相对简单的结构组成,成为研究宿主与噬菌体的共进化关系、以及通过基因工程改造噬菌体的良好模型。本文综述了短尾噬菌体的分类特征及不同短尾噬菌体识别宿主受体的分子机制。通过明确短尾噬菌体的识别宿主机制,有助于对相应噬菌体进行工程化改造,解决噬菌体应用中存在的关键问题,使噬菌体更广泛地应用于生物、医学与食品工业等领域中。

    Abstract:

    Bacteriophages can serve as an alternative for antibiotics. Tailed phages are the most common phages and can be classified into three families, including Podoviridae, Siphoviridae, and Myoviridae according to the different tail structures. Different phages vary in morphology and host recognition mechanism. It is therefore valuable to explore the host recognition mechanisms of Podoviridae phages with simple structure and short genome, which would be benefit for the research on phage-host co-evolutionary relationship and the phage genetic engineering. We reviewed the taxonomic characteristics and different host recognition mechanisms of Podoviridae phages. Deciphering the host recognition mechanisms can help solve the problems in the application of Podoviridae phages, which will contribute to the use of phages in biological, medical, and food industrial fields.

    参考文献
    [1] Ge HJ, Hu MZ, Zhao G, Du Y, Xu NN, Chen X, Jiao XA. The “fighting wisdom and bravery” of tailed phage and host in the process of adsorption. Microbiological Research, 2020, 230: 126344.
    [2] Kizziah JL, Manning KA, Dearborn AD, Dokland T. Structure of the host cell recognition and penetration machinery of a Staphylococcus aureus bacteriophage. PLoS Pathogens, 2020, 16(2): e1008314.
    [3] Goulet A, Spinelli S, Mahony J, Cambillau C. Conserved and diverse traits of adhesion devices from Siphoviridae recognizing proteinaceous or saccharidic receptors. Viruses, 2020, 12(5): 512.
    [4] Royer S, Morais AP, Da Fonseca Batistão DW. Phage therapy as strategy to face post-antibiotic era: a guide to beginners and experts. Archives of Microbiology, 2021, 203(4): 1271-1279.
    [5] Zrelovs N, Dislers A, Kazaks A. Motley crew: overview of the currently available phage diversity. Frontiers in Microbiology, 2020, 11: 579452.
    [6] 张永雨, 黄春晓, 杨军, 焦念志. 海洋微生物与噬菌体间的相互关系. 科学通报, 2011, 56(14): 1071-1079. Zhang YU, Huang CX, Yang J, Jiao NZ. Interactions between marine microorganisms and their phages. Chinese Science Bulletin, 2011, 56(14): 1071-1079. (in Chinese)
    [7] Olszak T, Latka A, Roszniowski B, Valvano MA, Drulis-Kawa Z. Phage life cycles behind bacterial biodiversity. Current Medicinal Chemistry, 2017, 24(36): 3987-4001.
    [8] Nobrega FL, Vlot M, De Jonge PA, Dreesens LL, Beaumont HJE, Lavigne R, Dutilh BE, Brouns SJJ. Targeting mechanisms of tailed bacteriophages. Nature Reviews Microbiology, 2018, 16(12): 760-773.
    [9] King AM, Lefkowitz E, Adams MJ, Carstens EB. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses. St Louis: Elsevier, 2011.
    [10] Hrebík D, Štveráková D, Škubník K, Füzik T, Pantůček R, Plevka P. Structure and genome ejection mechanism of Staphylococcus aureus phage P68. Science Advances, 2019, 5(10): eaaw7414.
    [11] Letarov AV, Kulikov EE. Adsorption of bacteriophages on bacterial cells. Biochemistry Biokhimiia, 2017, 82(13): 1632-1658.
    [12] Knirel YA, Valvano MA. Bacterial Lipopolysaccharides: Structure, Chemical Synthesis, Biogenesis and Interaction with Host Cells. Vienna: Springer-Verlag, 2011.
    [13] Casjens SR, Molineux IJ. Short noncontractile tail machines: adsorption and DNA delivery by podoviruses. Viral Molecular Machines, 2012: 143-179.
    [14] Latka A, Leiman PG, Drulis-Kawa Z, Briers Y. Modeling the architecture of depolymerase-containing receptor binding proteins in Klebsiella phages. Frontiers in Microbiology, 2019, 10: 2649.
    [15] Brown L, Wolf JM, Prados-Rosales R, Casadevall A. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nature Reviews Microbiology, 2015, 13(10): 620-630.
    [16] Wang L, Wang Q, Reeves PR. Endotoxins: Structure, Function and Recognition. Dordrecht: Springer, 2010.
    [17] Schmidt A, Rabsch W, Broeker NK, Barbirz S. Bacteriophage tailspike protein based assay to monitor phase variable glucosylations in Salmonella O-antigens. BMC Microbiology, 2016, 16(1): 1-11.
    [18] Knirel YA, Prokhorov NS, Shashkov AS, Ovchinnikova OG, Zdorovenko EL, Liu B, Kostryukova ES, Larin AK, Golomidova AK, Letarov AV. Variations in O-antigen biosynthesis and O-acetylation associated with altered phage sensitivity in Escherichia coli 4s. Journal of Bacteriology, 2015, 197(5): 905-912.
    [19] Bohm K, Porwollik S, Chu WP, Dover JA, Gilcrease EB, Casjens SR, McClelland M, Parent KN. Genes affecting progression of bacteriophage P22 infection in Salmonella identified by transposon and single gene deletion screens. Molecular Microbiology, 2018, 108(3): 288-305.
    [20] Mistou MY, Sutcliffe IC, Van Sorge NM. Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria. FEMS Microbiology Reviews, 2016, 40(4): 464-479.
    [21] Dunne M, Hupfeld M, Klumpp J, Loessner MJ. Molecular basis of bacterial host interactions by Gram-positive targeting bacteriophages. Viruses, 2018, 10(8): 397.
    [22] Farley MM, Tu J, Kearns DB, Molineux IJ, Liu J. Ultrastructural analysis of bacteriophage φ29 during infection of Bacillus subtilis. Journal of Structural Biology, 2017, 197(2): 163-171.
    [23] Li C, Yuan X, Li N, Wang J, Yu S, Zeng H, Zhang J, Wu Q, Ding Y. Isolation and characterization of Bacillus cereus phage vB_BceP-DLc1 reveals the largest member of the φ29-Like phages. Microorganisms, 2020, 8(11): 1750.
    [24] Wakinaka T, Matsutani M, Watanabe J, Mogi Y, Tokuoka M, Ohnishi A. Ribitol-containing wall teichoic acid of Tetragenococcus halophilus is targeted by bacteriophage phiWJ7 as a binding receptor. Microbiology Spectrum, 2022, 10(2): e00336-22.
    [25] Li X, Gerlach D, Du X, Larsen J, Stegger M, Kühner P, Peschel A, Xia G, Winstel V. An accessory wall teichoic acid glycosyltransferase protects Staphylococcus aureus from the lytic activity of Podoviridae. Scientific Reports, 2015, 5(1): 1-10.
    [26] Winstel V, Xia G, Peschel A. Pathways and roles of wall teichoic acid glycosylation in Staphylococcus aureus. International Journal of Medical Microbiology, 2014, 304(3/4): 215-221.
    [27] Holtzman T, Globus R, Molshanski-Mor S, Ben-Shem A, Yosef I, Qimron U. A continuous evolution system for contracting the host range of bacteriophage T7. Scientific Reports, 2020, 10(1): 307.
    [28] Tu J, Park T, Morado DR, Hughes KT, Molineux IJ, Liu J. Dual host specificity of phage SP6 is facilitated by tailspike rotation. Virology, 2017, 507: 206-215.
    [29] Andres D, Baxa U, Hanke C, Seckler R, Barbirz S. Carbohydrate binding of Salmonella phage P22 tailspike protein and its role during host cell infection. Biochemical Society Transactions, 2010, 38(5): 1386-1389.
    [30] Broeker NK, Kiele F, Casjens SR, Gilcrease EB, Thalhammer A, Koetz J, Barbirz S. In vitro studies of lipopolysaccharide-mediated DNA release of podovirus HK620. Viruses, 2018, 10(6): 289.
    [31] Teh MY, Tran ENH, Morona R. Bacteriophage Sf6 host range mutant that infects Shigella flexneri serotype 2a2 strains. FEMS Microbiology Letters, 2022, 369(1): fnac020.
    [32] McPartland J, Rothman-Denes LB. The tail sheath of bacteriophage N4 interacts with the Escherichia coli receptor. Journal of Bacteriology, 2009, 191(2): 525-532.
    [33] Prokhorov NS, Riccio C, Zdorovenko EL, Shneider MM, Browning C, Knirel YA, Leiman PG, Letarov AV. Function of bacteriophage G7C esterase tailspike in host cell adsorption. Molecular Microbiology, 2017, 105(3): 385-398.
    [34] Pyra A, Brzozowska E, Pawlik K, Gamian A, Dauter M, Dauter Z. Tail tubular protein A: a dual-function tail protein of Klebsiella pneumoniae bacteriophage KP32. Scientific Reports, 2017, 7(1): 2223.
    [35] Dai W, Hodes A, Hui WH, Gingery M, Miller JF, Zhou ZH. Three-dimensional structure of tropism-switching Bordetella bacteriophage. PNAS, 2010, 107(9): 4347-4452.
    [36] Witte S, Zinsli LV, Gonzalez-Serrano R, Matter CI, Loessner MJ, Van Mierlo JT, Dunne M. Structural and functional characterization of the receptor binding proteins of Escherichia coli O157 phages EP75 and EP335. Computational and Structural Biotechnology Journal, 2021, 19: 3416-3426.
    [37] Cuervo A, Fàbrega-Ferrer M, Machón C, Conesa JJ, Fernández FJ, Pérez-Luque R, Pérez-Ruiz M, Pous J, Vega MC, Carrascosa JL, Coll M. Structures of T7 bacteriophage portal and tail suggest a viral DNA retention and ejection mechanism. Nature Communications, 2019, 10(1): 3746.
    [38] Garcia-Doval C, Van Raaij MJ. Crystallization of the C-terminal domain of the bacteriophage T7 fibre protein gp17. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 2012, 68(2): 166-171.
    [39] Cornelissen A, Ceyssens PJ, Krylov VN, Noben JP, Volckaert G, Lavigne R. Identification of EPS-degrading activity within the tail spikes of the novel Pseudomonas putida phage AF. Virology, 2012, 434(2): 251-256.
    [40] Guo H, Arambula D, Ghosh P, Miller JF. Diversity-generating retroelements in phage and bacterial genomes. Microbiology Spectrum, 2014, 2(6): 2-6.
    [41] Leavitt JC, Gogokhia L, Gilcrease EB, Bhardwaj A, Cingolani G, Casjens SR. The tip of the tail needle affects the rate of DNA delivery by bacteriophage P22. PLoS One, 2013, 8(8): e70936.
    [42] Wang CY, Tu JG, Liu J, Molineux IJ. Structural dynamics of bacteriophage P22 infection initiation revealed by cryo-electron tomography. Nature Microbiology, 2019, 4(6): 1049-1056.
    [43] Olia AS, Prevelige PE, Johnson JE, Cingolani G. Three-dimensional structure of a viral genome-delivery portal vertex. Nature Structural & Molecular Biology, 2011, 18(5): 597-603.
    [44] Andres D, Hanke C, Baxa U, Seul A, Barbirz S, Seckler R. Tailspike interactions with lipopolysaccharide effect DNA ejection from phage P22 particles in vitro. Journal of Biological Chemistry, 2010, 285(47): 36768-36775.
    [45] Barbirz S, Müller JJ, Uetrecht C, Clark AJ, Heinemann U, Seckler R. Crystal structure of Escherichia coli phage HK620 tailspike: podoviral tailspike endoglycosidase modules are evolutionarily related. Molecular Microbiology, 2008, 69(2): 303-316.
    [46] Zaccheus MV, Broeker NK, Lundborg M, Uetrecht C, Barbirz S, Widmalm G. Structural studies of the O-antigen polysaccharide from Escherichia coli TD2158 having O18 serogroup specificity and aspects of its interaction with the tailspike endoglycosidase of the infecting bacteriophage HK620. Carbohydrate Research, 2012, 357: 118-125.
    [47] Broeker NK, Gohlke U, Müller JJ, Uetrecht C, Heinemann U, Seckler R, Barbirz S. Single amino acid exchange in bacteriophage HK620 tailspike protein results in thousand-fold increase of its oligosaccharide affinity. Glycobiology, 2012, 23(1): 59-68.
    [48] Simpson DJ, Sacher JC, Szymanski CM. Exploring the interactions between bacteriophage-encoded glycan binding proteins and carbohydrates. Current Opinion in Structural Biology, 2015, 34: 69-77.
    [49] Xu JW, Wang DH, Gui M, Xiang Y. Structural assembly of the tailed bacteriophage ϕ29. Nature Communications, 2019, 10(1): 2366.
    [50] Aksyuk AA, Bowman VD, Kaufmann B, Fields C, Klose T, Holdaway HA, Fischetti VA, Rossmann MG. Structural investigations of a Podoviridae Streptococcus phage C1, implications for the mechanism of viral entry. PNAS, 2012, 109(35): 14001-14006.
    [51] Gebhart D, Williams SR, Scholl D. Bacteriophage SP6 encodes a second tailspike protein that recognizes Salmonella enterica serogroups C2 and C3. Virology, 2017, 507: 263-266.
    [52] Zhao HY, Sequeira RD, Galeva NA, Tang L. The host outer membrane proteins OmpA and OmpC are associated with the Shigella phage Sf6 virion. Virology, 2011, 409(2): 319-327.
    [53] Kęsik-Szeloch A, Drulis-Kawa Z, Weber-Dąbrowska B, Kassner J, Majkowska-Skrobek G, Augustyniak D, Lusiak-Szelachowska M, Zaczek M, Górski A, Kropinski AM. Characterising the biology of novel lytic bacteriophages infecting multidrug resistant Klebsiella pneumoniae. Virology Journal, 2013, 10: 100.
    [54] Latka A, Lemire S, Grimon D, Dams D, Maciejewska B, Lu T, Drulis-Kawa Z, Briers Y. Engineering the modular receptor-binding proteins of Klebsiella phages switches their capsule serotype specificity. Mbio, 2021, 12(3): e00455-21.
    [55] Majkowska-Skrobek G, Latka A, Berisio R, Squeglia F, Maciejewska B, Briers Y, Drulis-Kawa Z. Phage-borne depolymerases decrease Klebsiella pneumoniae resistance to innate defense mechanisms. Frontiers in Microbiology, 2018, 9: 2517.
    [56] Brzozowska E, Pyra A, Pawlik K, Janik M, Górska S, Urbańska N, Drulis-Kawa Z, Gamian A. Hydrolytic activity determination of tail tubular protein A of Klebsiella pneumoniae bacteriophages towards saccharide substrates. Scientific Reports, 2017, 7(1): 18048.
    [57] Fortuna MA, Barbour MA, Zaman L, Hall AR, Buckling A, Bascompte J. Coevolutionary dynamics shape the structure of bacteria-phage infection networks. Evolution; International Journal of Organic Evolution, 2019, 73(5): 1001-1011.
    [58] Laanto E, Mäkelä K, Hoikkala V, Ravantti JJ, Sundberg LR. Adapting a phage to combat phage resistance. Antibiotics, 2020, 9(6): 291.
    [59] Azam AH, Tanji Y. Bacteriophage-host arm race: an update on the mechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy. Applied Microbiology and Biotechnology, 2019, 103(5): 2121-2131.
    [60] Latino L, Midoux C, Vergnaud G, Pourcel C. Investigation of Pseudomonas aeruginosa strain PcyII-10 variants resisting infection by N4-like phage Ab09 in search for genes involved in phage adsorption. PLoS One, 2019, 14(4): e0215456.
    [61] Dekel-Bird NP, Sabehi G, Mosevitzky B, Lindell D. Host-dependent differences in abundance, composition and host range of cyanophages from the Red Sea. Environmental Microbiology, 2015, 17(4): 1286-1299.
    [62] Avrani S, Wurtzel O, Sharon I, Sorek R, Lindell D. Genomic island variability facilitates Prochlorococcus– virus coexistence. Nature, 2011, 474(7353): 604-608.
    [63] Schwartz DA, Lindell D. Genetic hurdles limit the arms race between Prochlorococcus and the T7-like podoviruses infecting them. The ISME Journal, 2017, 11(8): 1836-1851.
    [64] Yehl K, Lemire S, Yang AC, Ando H, Mimee M, Torres MDT, De La Fuente-Nunez C, Lu TK. Engineering phage host-range and suppressing bacterial resistance through phage tail fiber mutagenesis. Cell, 2019, 179(2): 459-469.e9.
    [65] Peng H, Chen IA. Phage engineering and the evolutionary arms race. Current Opinion in Biotechnology, 2021, 68: 23-29.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李娜,袁晓鸣,王涓,吴清平,丁郁. 短尾噬菌体识别宿主机制的研究进展[J]. 微生物学报, 2022, 62(11): 4324-4335

复制
分享
文章指标
  • 点击次数:570
  • 下载次数: 1821
  • HTML阅读次数: 1199
  • 引用次数: 0
历史
  • 收稿日期:2022-03-15
  • 最后修改日期:2022-05-24
  • 在线发布日期: 2022-11-11
  • 出版日期: 2022-11-04
文章二维码