一株有色金属矿山1-亚硝基-2-萘酚降解菌的筛选、鉴定和降解特性
作者:
基金项目:

国家重点研发计划(2020YFC1807600, 2019YFC1803500);国家自然科学基金(42007289);中央高校基本业务经费(53200759777)


Isolation, identification, and degradation characteristics of a 1-nitroso-2-naphthol-degrading strain derived from nonferrous metal (loid) tailings
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    1-亚硝基-2-萘酚是一类有色选矿药剂代表性的新型浮选药剂,在采选冶行业为了提高低品位矿物资源的利用率,被大量投入使用,该药剂的高稳定性进一步增大了矿山环境中重金属与有机选冶药剂复合污染的治理难度。微生物修复作为稠环芳烃(polycyclic aromatic hydrocarbons,PAHs)类污染物重要技术手段之一,具有安全、经济、高效和无二次污染等特点。【目的】本研究从我国广西河池市周边的典型有色金属尾矿环境中分离出1株高效降解1-亚硝基-2-萘酚的菌株,并分析其降解特性及其潜在的代谢途径,从而探究矿山复合污染生态系统中稠环芳烃类污染物的微生物修复技术的应用前景。【方法】从有色金属尾矿样本中筛选到以1-亚硝基-2-萘酚为唯一碳源的菌株,经16S rRNA基因序列鉴定,结合气相色谱-质谱联合(gas chromatography-mass spectrometer,GC-MS)检测分析菌株对1-亚硝基-2-萘酚的降解特性及中间代谢产物,并推测可能的代谢途径。【结果】筛选获得1株高效降解1-亚硝基-2-萘酚的Pseudomonas putida CUGB-JL11菌株,经鉴定为革兰氏阴性杆的恶臭假单胞菌。该菌株最适温度为30 ℃左右,最适pH值范围为6-8条件下,菌株5 d内对40 mg/L 1-亚硝基-2-萘酚的降解率高达81%。降解中间代谢产物主要为苯环类物质:苯甲羟肟酸甲酯和苯丙胺,但其母体及大部分中间产物都降解为小分子物质或者被完全降解。【结论】恶臭假单胞菌P. putida CUGB-JL11具有良好的1-亚硝基-2-萘酚降解能力和较强的环境适应性,有进一步被开发为微生物菌剂以用于稠环芳烃类污染修复的巨大潜力,为有色金属矿山生态系统中重金属和有机选冶药剂复合污染的微生物修复研究提供了理论依据和可利用的微生物资源。

    Abstract:

    As a new representative flotation reagent, 1-nitroso-2-naphthol is widely used in the mining and metallurgical industry to improve the utilization rate of low-grade mineral resources. It is highly stable, posing a challenge to the treatment of heavy metal pollution and organic smelting agent pollution in mine. Among the crucial techniques for the remediation of polycyclic aromatic hydrocarbons (PAHs), bio-remediation is safe and efficient with low cost and no secondary pollution. [Objective] To screen an efficient 1-nitroso-2-naphthol-degrading strain from the typical non-ferrous metal tailings in the periphery of Hechi city, Guangxi Zhuang autonomous region in China, analyze the degradation characteristics and potential metabolic pathways, and thereby examine the conditions for the microbial remediation of the mine polluted by compound pollutants including PAHs. [Methods] The strain which used 1-nitroso-2-naphthol as the only carbon source was screened and identified by 16S rRNA gene sequencing. Gas chromatography-mass spectrometry (GC-MS) was employed to analyze degradation characteristics of 1-nitroso-2-naphthol and the intermediate metabolites, and the metabolic pathways were predicted. [Results] An efficient strain was screened out and identified as the Gram-negative Pseudomonas putida CUGB-JL11. Under the optimal conditions of 30 ℃ and pH 6-8, the 5-day degradation rate of 40 mg/L 1-nitroso-2-naphthol by the strain was up to 81%. The main intermediate metabolites were the benzodiazepines methyl N-hydroxybenzenecarboximidoate and amphetamine, but the organic substances and most of the intermediates were degraded into small molecules or completely degraded. [Conclusion] CUGB-JL11 boasts high 1-nitroso-2-naphthol-degrading efficiency and strong environmental adaptability. It has a huge potential for the treatment of PAHs. This study lays a theoretical basis and provides microbial resources for bioremediation of nonferrous metal mine polluted by both heavy metals and flotation reagents.

    参考文献
    [1] Liu JL, Yao J, Wang F, Ni W, Liu XY, Sunahara G, Duran R, Jordan G, Hudson-Edwards KA, Alakangas L, Solevic-Knudsen T, Zhu XZ, Zhang YY, Li ZF. China’s most typical nonferrous organic-metal facilities own specific microbial communities. Scientific Reports, 2018, 8: 12570–125580.
    [2] Liu JL, Yao J, Zhu XZ, Zhou DL, Duran R, Mihucz VG, Bashir S, Hudson-Edwards KA. Metagenomic exploration of multi-resistance genes linked to microbial attributes in active nonferrous metal(loid) tailings. Environmental Pollution, 2021, 273: 115667.
    [3] 陈彩霞, 李华昌, 栾和林, 姚文. 矿山药剂的降解与二次复合污染. 有色金属, 2007(2): 86–89. Chen CX, Li HC, Luan HL, Yao W. Degradation and secondary complex pollution of mine reagents. Nonferrous Metals, 2007(2): 86–89. (in Chinese)
    [4] Zhang YY, Wang F, Hudson-Edwards KA, Blake R, Zhao FR, Yuan ZM, Gao W. Characterization of mining-related aromatic contaminants in active and abandoned metal(loid) tailings ponds. Environmental Science & Technology, 2020, 54(23): 15097–15107.
    [5] Pozdnyakova N, Nikiforova S, Turkovskaya O. Influence of PAHs on ligninolytic enzymes of the fungus Pleurotus ostreatus D1. Open Life Sciences, 2010, 5(1): 83–94.
    [6] 周伟.α-亚硝基-β-萘酚在异极矿浮选中活化行为的研究. 湖南大学硕士学位论文, 2010.
    [7] Lu C, Yao J, Knudsen TŠ, Amde M, Gu JH, Liu JL, Li H, Zhang JY. Degradation of α-nitroso-β-naphthol by UVA-B activated peroxide, persulfate and monopersulfate oxidants in water. Journal of Cleaner Production, 2019, 238: 117942.
    [8] 李羽, 罗丽娟, 杨旭楠, 许玫英, 栾天罡. 红树林湿地多环芳烃的微生物降解. 微生物学报, 2022, 62(2): 489–507. Li Y, Luo LJ, Yang XN, Xu MY, Luan TG. Advances in microbial degradation of polycyclic aromatic hydrocarbons in mangrove wetlands. Acta Microbiologica Sinica, 2022, 62(2): 489–507. (in Chinese)
    [9] 陈秀鹃, 姜丽佳, 孙靖云, 周月, 陈英文, 沈树宝. 微生物降解多环芳烃的研究进展. 现代化工, 2018, 38(10): 34–37. Chen XJ, Jiang LJ, Sun JY, Zhou Y, Chen YW, Shen SB. Research progress in microbial degradation of polycyclic aromatic hydrocarbons. Modern Chemical Industry, 2018, 38(10): 34–37. (in Chinese)
    [10] Alao MB, Adebayo EA. Fungi as veritable tool in bioremediation of polycyclic aromatic hydrocarbons-polluted wastewater. Journal of Basic Microbiology, 2022, 62(3/4): 223–244.
    [11] Ma L, Deng FC, Yang C, Guo CL, Dang Z. Bioremediation of PAH-contaminated farmland: field experiment. Environmental Science and Pollution Research International, 2018, 25(1): 64–72.
    [12] Ding YJ, Wyckoff KN, He Q, Cao XJ, Huang BS. Biodegradation of waste asphalt shingle by white rot fungi. Journal of Cleaner Production, 2021, 310: 127448.
    [13] Yu XX, Lee K, Ma B, Asiedu E, Ulrich AC. Indigenous microorganisms residing in oil sands tailings biodegrade residual bitumen. Chemosphere, 2018, 209: 551–559.
    [14] 栾和林, 姚文, 吴萌. 湿法冶金中的一些污染新问题的探讨. 矿冶. 2002, 11: 280–282. Luan HL, Yao W, Wu M. Discussion of some new pollution problems in hydrometallurgy. Mining Metallurgy, 2002, 11: 280–282. (in Chinese)
    [15] Zhang D, Wu LP, Yao J, Herrmann H, Richnow HH. Carbon and hydrogen isotope fractionation of phthalate esters during degradation by sulfate and hydroxyl radicals. Chemical Engineering Journal, 2018, 347: 111–118.
    [16] Shu WS, Ye ZH, Lan CY, Zhang ZQ, Wong MH. Acidification of lead/zinc mine tailings and its effect on heavy metal mobility. Environment International, 2001, 26(5/6): 389–394.
    [17] Khan AU, Rehman MU, Zahoor M, Shah AB, Zekker I. Biodegradation of brown 706 dye by bacterial strain Pseudomonas aeruginosa. Water, 2021, 13(21): 2959.
    [18] Révész F, Farkas M, Kriszt B, Szoboszlay S, Benedek T, Táncsics A. Effect of oxygen limitation on the enrichment of bacteria degrading either benzene or toluene and the identification of Malikia spinosa (Comamonadaceae) as prominent aerobic benzene-, toluene-, and ethylbenzene-degrading bacterium: enrichment, isolation and whole-genome analysis. Environmental Science and Pollution Research International, 2020, 27(25):
    [19] Duca D, Rose DR, Glick BR. Characterization of a nitrilase and a nitrile hydratase from Pseudomonas sp. strain UW4 that converts indole-3-acetonitrile to indole-3-acetic acid. Applied and Environmental Microbiology, 2014, 80(15): 4640–4649.
    [20] Khan AH, Topp E, Scott A, Sumarah M, Macfie SM, Ray MB. Biodegradation of benzalkonium chlorides singly and in mixtures by a Pseudomonas sp. isolated from returned activated sludge. Journal of Hazardous Materials, 2015, 299: 595–602.
    [21] Premnath N, Mohanrasu K, Rao RGR, Dinesh GH, Prakash GS, Ananthi V, Ponnuchamy K, Muthusamy G, Arun A. A crucial review on polycyclic aromatic hydrocarbons - environmental occurrence and strategies for microbial degradation. Chemosphere, 2021, 280: 130608.
    [22] Salunke AS, Kharat AS. Data on isolation and purification of fibrinolytic enzyme from Pseudomonas baetica SUHU25. Data in Brief, 2019, 26: 104369.
    [23] Rehman NNMA, Dixit PP. Influence of light wavelengths, light intensity, temperature, and pH on biosynthesis of extracellular and intracellular pigment and biomass of Pseudomonas aeruginosa NR1. Journal of King Saud University - Science, 2020, 32(1): 745-752.
    [24] 张煜航, Manzoor Ahmad, 董俊德, 杨清松, 周卫国, 凌娟. 一株海草沉积物菲降解菌的筛选、鉴定和降解特性. 微生物学通报, 2021, 48(6): 1841–1853. Zhang YH, Ahmad M, Dong JD, Yang QS, Zhou WG, Ling J. Isolation, identification and degradation characteristics of a phenanthrene degrading bacteria derived from seagrass sediment. Microbiology China, 2021, 48(6): 1841–1853. (in Chinese)
    [25] Annweiler E, Richnow HH, Antranikian G, Hebenbrock S, Garms C, Franke S, Francke W, Michaelis W. Naphthalene degradation and incorporation of naphthalene-derived carbon into biomass by the thermophile Bacillus thermoleovorans. Applied and Environmental Microbiology, 2000, 66(2): 518–523.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李欣媛,孟行,姚俊,李浩,朱潇哲,赵陈晨,刘建丽. 一株有色金属矿山1-亚硝基-2-萘酚降解菌的筛选、鉴定和降解特性[J]. 微生物学报, 2022, 62(11): 4385-4396

复制
分享
文章指标
  • 点击次数:320
  • 下载次数: 1014
  • HTML阅读次数: 1007
  • 引用次数: 0
历史
  • 收稿日期:2022-03-10
  • 最后修改日期:2022-06-28
  • 在线发布日期: 2022-11-11
  • 出版日期: 2022-11-04
文章二维码