College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China;College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China 在期刊界中查找 在百度中查找 在本站中查找
College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China;State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Nanning 530004, Guangxi, China 在期刊界中查找 在百度中查找 在本站中查找
[Objective] To identify a novel type III secreted effector (T3SE) gene in the genome of Xanthomonascampestris pv. campestris (Xcc) strain 8004. [Methods] A Tn5 transposon system integrated with AvrBs159-445was constructed for library screening. The mutant library was generated based on avrBs1-deleted mutant and then screened on Capsicum annuum cv. ECW-10R. [Results] Seven clones with visible hypersensitive response (HR) were screened out via large-scale HR assay. In addition to 3 mutants inserted into known T3SE genes, a new locus was identified, which was located between XC_0438 and XC_0439 and un-annotated in Xcc 8004 by plasmid rescue and sequencing. We annotated the new gene designated as XC_0438a according to the bioinformatics analysis results. The translocation assay confirmed that the signal region of XC_0438a could guide the secretion and translocation of the reporter protein AvrBs1 and elicit the HR of ECW-10R. The results of β-glucuronidase (GUS) activity assay demonstrated that the expression of XC_0438a was induced in nutrition sterile medium and activated by the key regulatory proteins HrpG and HrpX. However, in our tested conditions, XC_0438a had no significant contribution to the pathogenesis of Xcc. [Conclusion] In summary, we identified a novel effector gene XC_0438a dependent on the type III secretion system.
[1] Alfano JR, Collmer A. The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death. Journal of Bacteriology, 1997, 179(18): 5655-5662.
[2] Williams PH. Black rot: a continuing threat toward crucifers. Plant Disease, 1980, 64(8): 736-742.
[3] Buell CR. Interactions between Xanthomonas species and Arabidopsis thaliana. The Arabidopsis Book, 2002, 1: e0031.
[4] Li RF, Lu GT, Li L, Su HZ, Feng GF, Chen Y, He YQ, Jiang BL, Tang DJ, Tang JL. Identification of a putative cognate sensor kinase for the two-component response regulator HrpG, a key regulator controlling the expression of the hrp genes in Xanthomonas campestris pv. campestris. Environmental Microbiology, 2014, 16(7): 2053-2071.
[5] Wengelnik K, Marie C, Russel M, Bonas U. Expression and localization of HrpA1, a protein of Xanthomonas campestris pv. vesicatoria essential for pathogenicity and induction of the hypersensitive reaction. Journal of Bacteriology, 1996, 178(4): 1061-1069.
[6] Huang DL, Tang DJ, Liao Q, Li XQ, He YQ, Feng JX, Jiang BL, Lu GT, Tang JL. The Zur of Xanthomonas campestris is involved in hypersensitive response and positively regulates the expression of the hrp cluster via hrpX but not hrpG. Molecular Plant-Microbe Interactions, 2009, 22(3): 321-329.
[7] Koebnik R, Krüger A, Thieme F, Urban A, Bonas U. Specific binding of the Xanthomonas campestris pv. vesicatoria AraC-type transcriptional activator HrpX to plant-inducible promoter boxes. Journal of Bacteriology, 2006, 188(21): 7652-7660.
[8] Jin Q, He SY. Role of the Hrp pilus in type III protein secretion in Pseudomonas syringae. Science, 2001, 294(5551): 2556-2558.
[9] Li CM, Brown I, Mansfield J, Stevens C, Boureau T, Romantschuk M, Taira S. The Hrp pilus of Pseudomonas syringae elongates from its tip and acts as a conduit for translocation of the effector protein HrpZ. The EMBO Journal, 2002, 21(8): 1909-1915.
[10] Kjemtrup S, Nimchuk Z, Dangl JL. Effector proteins of phytopathogenic bacteria: bifunctional signals in virulence and host recognition. Current Opinion in Microbiology, 2000, 3(1): 73-78.
[11] Bonas U, Stall RE, Staskawicz B. Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Molecular and General Genetics: MGG, 1989, 218(1): 127-136.
[12] Roden JA, Belt B, Ross JB, Tachibana T, Vargas J, Mudgett MB. A genetic screen to isolate type III effectors translocated into pepper cells during Xanthomonas infection. PNAS, 2004, 101(47): 16624-16629.
[13] Noël L, Thieme F, Gäbler J, Büttner D, Bonas U. XopC and XopJ, two novel type III effector proteins from Xanthomonas campestris pv. vesicatoria. Journal of Bacteriology, 2003, 185(24): 7092-7102.
[14] Dillon MM, Almeida R, Laflamme B, Martel A, Weir BS, Desveaux D, Guttman DS. Molecular evolution of Pseudomonas syringae type III secreted effector proteins. Frontiers in Plant Science, 2019, 10: 418.
[15] He YQ, Zhang L, Jiang BL, Zhang ZC, Xu RQ, Tang DJ, Qin J, Jiang W, Zhang X, Liao J, Cao JR, Zhang SS, Wei ML, Liang XX, Lu GT, Feng JX, Chen B, Cheng J, Tang JL. Comparative and functional genomics reveals genetic diversity and determinants of host specificity among reference strains and a large collection of Chinese isolates of the phytopathogen Xanthomonascampestris pv. campestris. Genome Biology, 2007, 8(10): R218.
[16] Xu RQ, Blanvillain S, Feng JX, Jiang BL, Li XZ, Wei HY, Kroj T, Lauber E, Roby D, Chen B, He YQ, Lu GT, Tang DJ, Vasse J, Arlat M, Tang JL. AvrACXcc8004, a type III effector with a leucine-rich repeat domain from Xanthomonascampestris pathovar campestris confers avirulence in vascular tissues of Arabidopsis thaliana ecotype Col-0. Journal of Bacteriology, 2008, 190(1): 343-355.
[17] Jiang BL, He YQ, Cen WJ, Wei HY, Jiang GF, Jiang W, Hang XH, Feng JX, Lu GT, Tang DJ, Tang JL. The type III secretion effector XopXccN of Xanthomonas campestris pv. campestris is required for full virulence. Research in Microbiology, 2008, 159(3): 216-220.
[18] Jiang W, Jiang BL, Xu RQ, Huang JD, Wei HY, Jiang GY, Cen WJ, Liu J, Ge YY, Li GH, Su LL, Hang XH, Tang DJ, Lu GT, Feng JX, He YQ, Tang JL. Identification of six type III effector genes with the PIP box in Xanthomonas campestris pv. campestris and five of them contribute individually to full pathogenicity. Molecular Plant-Microbe Interactions, 2009, 22(11): 1401-1411.
[19] 杨丽超, 苏华, 杨凤, 蹇华哗, 周敏, 姜伟, 姜伯乐. 十字花科黑腐病菌一个新的Ⅲ型效应物XC3176的鉴定. 微生物学报, 2015, 55(10): 1264-1272. Yang LC, Su H, Yang F, Jian HH, Zhou M, Jiang W, Jiang I. Identification of a new type Ⅲ effector XC3176 in Xanthomonas campestris pv. campestris. Acta Microbiologica Sinica, 2015, 55(10): 1264-1272. (in Chinese)
[20] Ignatov AN, Monakhos GF, Dzhalilov FS, Pozmogova GV. A virulence gene from Xanthomonas campestris pv. campestris homologous to the avrBs2 locus is recognized in race-specific reaction by two different resistance genes in Brassica plant species. Genetika, 2002, 38(12): 1656-1662. (in Russian)
[21] Hibberd AM, Bassett MJ, Stall RE. Allelism tests of three dominant genes for hypersensitive resistance to bacterial spot of pepper. Phytopathology, 1987, 77(9): 1304-1307
[22] Zou HS, Yuan L, Guo W, Li YR, Che YZ, Zou LF, Chen GY. Construction of a Tn5-tagged mutant library of Xanthomonas oryzae pv. oryzicola as an invaluable resource for functional genomics. Current Microbiology, 2011, 62(3): 908-916.
[23] Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene, 1994, 145(1): 69-73.
[24] Dow JM, Crossman L, Findlay K, He YQ, Feng JX, Tang JL. Biofilm dispersal in Xanthomonascampestris is controlled by cell-cell signaling and is required for full virulence to plants. PNAS, 2003, 100(19): 10995-11000.
[25] Tang DJ, Li XJ, He YQ, Feng JX, Chen BS, Tang JL. The zinc uptake regulator Zur is essential for the full virulence of Xanthomonas campestris pv. campestris. Molecular Plant-Microbe Interactions, 2005, 18(7): 652-658.
[26] Henderson RF, Benson JM, Hahn FF, Hobbs CH, Jones RK, Mauderly JL, McClellan RO, Pickrell JA. New approaches for the evaluation of pulmonary toxicity: bronchoalveolar lavage fluid analysis. Fundamental and Applied Toxicology, 1985, 5(3): 451-458.
[27] Ronald PC, Staskawicz BJ. The avirulence gene avrBs1 from Xanthomonas campestris pv. vesicatoria encodes a 50-kD protein. Molecular Plant-Microbe Interactions, 1988, 1(5): 191-198.
[28] Qian W, Jia YT, Ren SX, He YQ, Feng JX, Lu LF, Sun QH, Ying G, Tang DJ, Tang H, Wu W, Hao P, Wang LF, Jiang BL, Zeng SY, Gu WY, Lu G, Rong L, Tian YC, Yao ZJ, Fu G, Chen BS, Fang RX, Qiang BQ, Chen Z, Zhao GP, Tang JL, He CZ. Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Research, 2005, 15(6): 757-767.
[29] Wengelnik K, Bonas U. HrpXv, an AraC-type regulator, activates expression of five of the six loci in the hrp cluster of Xanthomonas campestris pv. vesicatoria. Journal of Bacteriology, 1996, 178(12): 3462-3469.
[30] Wengelnik K, Van Den Ackerveken G, Bonas U. HrpG, a key hrp regulatory protein of Xanthomonas campestris pv. vesicatoria is homologous to two-component response regulators. Molecular Plant-Microbe Interactions, 1996, 9(8): 704-712.
[31] Daniels MJ, Barber CE, Turner PC, Sawczyc MK, Byrde RJ, Fielding AH. Cloning of genes involved in pathogenicity of Xanthomonas campestris pv. campestris using the broad host range cosmid pLAFR1. The European Molecular Biology Organization (EMBO)Journal, 1984, 3(13): 3323-3328.
[32] Wei K, Tang DJ, He YQ, Feng JX, Jiang BL, Lu GT, Chen BS, Tang JL. hpaR, a putative marR family transcriptional regulator, is positively controlled by HrpG and HrpX and involved in the pathogenesis, hypersensitive response, and extracellular protease production of Xanthomonas campestris pathovar campestris. Journal of Bacteriology, 2007, 189(5): 2055-2062.
[33] Gürlebeck D, Thieme F, Bonas U. Type III effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant. Journal of Plant Physiology, 2006, 163(3): 233-255.
[34] Liu YC, Wang SC, Yu YJ, Fung KM, Yang MT, Tseng YH, Tsai SF, Sun HS, Lyu PC, Chou SH. Complete genome sequence of Xanthomonas campestris pv. campestris strain 17 from Taiwan. Genome Announcements, 2015, 3(6): e01466-15.
[35] Desai D, Li JH, Van Zijll D JE, Braun R, Pitman A, Visnovsky S, Hampton J, Christey M. Xanthomonascampestris pv. campestris isolates, ICMP 4013 and ICMP 21080. Genome Announcements, 2015, 3(5): e01247-15.
[36] Da Silva ACR, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LMC, Do Amaral AM, Bertolini MC, Camargo LEA, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RMB, Coutinho LL, Cursino-Santos JR, El-Dorry H, Faria JB, Ferreira AJS, Ferreira RCC, Ferro MIT, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EGM, Lemos MVF, Locali EC, Machado MA, Madeira AMBN, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CFM, Miyaki CY, Moon DH, Moreira LM, Novo MTM, Okura VK, Oliveira MC, Oliveira VR, Pereira HA, Rossi A, Sena JAD, Silva C, De Souza RF, Spinola LAF, Takita MA, Tamura RE, Teixeira EC, Tezza RID, Trindade Dos Santos M, Truffi D, Tsai SM, White FF, Setubal JC, Kitajima JP. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature, 2002, 417(6887): 459-463.
[37] Vorhölter FJ, Schneiker S, Goesmann A, Krause L, Bekel T, Kaiser O, Linke B, Patschkowski T, Ruckert C, Schmid J, Sidhu VK, Sieber V, Tauch A, Watt SA, Weisshaar B, Becker A, Niehaus K, Puhler A. The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. Journal of Biotechnology, 2008, 134(1/2): 33-45.
[38] Bolot S, Roux B, Carrere S, Jiang BL, Tang JL, Arlat M, Noel LD. Genome sequences of three atypical Xanthomonas campestris pv. campestris strains, CN14, CN15, and CN16. Genome Announcements, 2013, 1(4): e00465-13.
[39] Bogdanove AJ, Koebnik R, Lu H, Furutani A, Angiuoli SV, Patil PB, Van Sluys MA, Ryan RP, Meyer DF, Han SW, Aparna G, Rajaram M, Delcher AL, Phillippy AM, Puiu D, Schatz MC, Shumway M, Sommer DD, Trapnell C, Benahmed F, Dimitrov G, Madupu R, Radune D, Sullivan S, Jha G, Ishihara H, Lee SW, Pandey A, Sharma V, Sriariyanun M, Szurek B, Vera-Cruz CM, Dorman KS, Ronald PC, Verdier V, Dow JM, Sonti RV, Tsuge S, Brendel VP, Rabinowicz PD, Leach JE, White FF, Salzberg SL. Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp. Journal of Bacteriology, 2011, 193(19): 5450-5464.
[40] Potnis N, Krasileva K, Chow V, Almeida NF, Patil PB, Ryan RP, Sharlach M, Behlau F, Dow JM, Momol M, White FF, Preston JF, Vinatzer BA, Koebnik R, Setubal JC, Norman DJ, Staskawicz BJ, Jones JB. Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper. BioMed Central Genomics, 2011, 12: 146.