野生鸟类分离的多重耐药肺炎克雷伯氏菌(Klebsiella pneumoniae)耐药基因分子进化特征研究
作者:
基金项目:

广东省科学院人才专项(2016GDASRC-0205);北京动物园北京市重点实验室开放课题(ZDK202105)


Molecular evolutionary characterization of multidrug-resistant Klebsiella pneumoniae genes isolated from wild birds
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [64]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】调查野生鸟类携带菌的耐药状况,探索其在细菌耐药性传播过程中的作用。【方法】从野生鸟类石鸡、绯胸鹦鹉、太阳锥尾鹦鹉和黑领椋鸟的新鲜粪便分离4株Klebsiella pneumoniae,采用微量肉汤稀释法评估其多重耐药表型,并利用全基因组测序技术和细菌全因组关联分析、比较基因组学方法对分离株进行分子溯源,系统解析其携带的多重耐药质粒或基因与其宿主、同源质粒间的关联。【结果】4株肺炎克雷伯菌的耐药谱各不相同,来自石鸡样本的分离株S90-2对9种药物耐受,绯胸鹦鹉样本分离株S141对3种药物耐受,太阳锥尾鹦鹉分离株M911-1仅耐受氨苄西林,黑领椋鸟的样本分离株S130-1对所使用的14种药物完全敏感。S90-2属于ST629型,携带blaCTX-M-14fosA6aac(3)-IidblaSHV-11为主的30个耐药基因和携带1个耐药性质粒pS90-2.3 (IncR型)。S141属于ST1662型,携带fosA5blaSHV-217等27个耐药基因,1个质粒pS141.1 [IncFIB(K)(pCAV1099-114)/repB型]仅携带耐药基因adeF。M911-1为新ST类型,携带blaSHV-1fosA6等共计27个耐药基因,其质粒pM911-1.1携带了3个耐药基因。S130-1属于ST3753型,携带blaSHV-11fosA6等27个耐药基因,pS130-1 [IncFIB(K)型]则仅携带一个耐药基因tet(A)。质粒比对表明,质粒pS90-2.3携带的耐药基因片段源自不同的肠杆菌科菌株染色体或质粒。pS90-2.3的同源质粒主要来自人类宿主菌,且主要在中国分布,这些质粒主要细菌宿主为K. pneumoniaeEscherichia coli,且ST11型K. pneumoniae分离株为重要宿主菌。【结论】本研究中来自野生鸟类的多重耐药K. pneumoniae,其耐药基因主要来自质粒,质粒耐药基因主要由转座子、插入序列、整合子和前噬菌体等可移动元件介导,这些多重耐药质粒与人类的宿主菌密切相关。

    Abstract:

    [Objective] To investigate the drug resistance status of wild birds carrying bacteria and to explore their role in the transmission of bacterial drug resistance. [Methods] Four Klebsiella pneumoniae were isolated from fresh feces of captured Alectoris chukar, Psittacula alexandri, Aratinga solstitialis and Sturnus nigricollis, and were assessed for multidrug resistance phenotypes by micro-broth dilution method. Bacterial genome-wide association analysis and comparative genomics were used to trace the isolates and systematically analyze the association between the multidrug resistance plasmids/genes and their hosts/homologous plasmids. [Results] Four strains of K. pneumoniae showed different drug resistance phenotypes. Specifically, S90-2 from A. chukar was resistant to nine drugs including ampicillin, cefuroxime, cefazolin, ceftriaxone and cefepime; S141 from P. alexandri was resistant to ampicillin, cefuroxime and cefazolin; M911-1 from A. solstitialis was resistant to ampicillin only; S130-1 from S. nigricollis was sensitive to all of the 14 drugs. S90-2 belonged to ST629 type and carried 30 resistance genes including blaCTX-M-14, fosA6, aac(3)-Iid and blaSHV-11, and its plasmid pS90-2.3 (IncR) carried resistance genes of mphA, dfrA12, aadA2, qacEdelta1, sul1, tet(A), aph(3')-Ia, sul2 and aph(3')-Ib. S141 belonged to ST1662 type and carried 27 resistance genes including fosA5 and blaSHV-217, and only plasmid pS141.1 [IncFIB(K)(pCAV1099-114)/repB] carried one resistance gene adeF. M911-1 was a new ST type, carrying 27 resistance genes such as blaSHV-1 and fosA6, and its plasmid pM911-1.1 (novel) carried three resistance genes qnrS1, blaLAP-2 and tet(A). S130-1 belonged to ST3753 type, carrying 27 resistance genes such as blaSHV-11 and fosA6, and its plasmid pS130-1 [IncFIB(K)] carried only one resistance gene tet(A). The plasmids pM911-1.1 and pS90-2.3 failed to perform conjugative transfer, but their resistance gene fragments were derived from multiple homologous chromosomes or plasmids of Enterobacteriaceae strains, and the formation of resistance gene fragments (MDR region) involved interactions between multiple mobile element genes, resulting in a complex and diverse structure of resistance plasmid. The homologous plasmids related to pM911-1.1 and pS90-2.3 were mainly from human bacteria hosts in China, such as K. pneumoniae and Escherichia coli, and the K. pneumoniae ST11 was a major host for the above drug-resistant homologous plasmids. [Conclusion] The multidrug-resistant K. pneumoniae from wild birds in this study had resistance genes mainly from plasmids, which were mediated by transposons, insertion sequences, integrons and prophage and other mobile elements, and these multidrug-resistant plasmids were closely related to the human host bacteria.

    参考文献
    [1] Burnham CAD, Leeds J, Nordmann P, O՚Grady J, Patel J. Diagnosing antimicrobial resistance. Nature Reviews Microbiology, 2017, 15(11): 697-703.
    [2] Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clinical Microbiology Reviews, 2018, 31(4): e00088-17.
    [3] Wang X, Kang Q, Zhao J, Liu Z, Ji F, Li J, Yang J, Zhang C, Jia T, Dong G, Liu S, Hu G, Qin J, Wang C. Characteristics and epidemiology of extended- spectrum β-lactamase-producing multidrug-resistant Klebsiella pneumoniae from red Kangaroo, China. Frontiers in Microbiology, 2020, 11: 560474.
    [4] Kang Q, Wang X, Zhao J, Liu Z, Ji F, Chang H, Yang J, Hu S, Jia T, Wang X, Tang J, Dong G, Hu G, Wang J, Zhang Y, Qin J, Wang C. Multidrug-resistant Proteus mirabilis isolates carrying blaOXA-1 and blaNDM-1 from wildlife in China: increasing public health risk. Integrative Zoology, 2021, 16(6): 798–809.
    [5] Ji F, Liu S, Wang X, Zhao J, Zhu J, Yang J, Zhang C, Jia Z, Zhao R, Hu G, Wang J, Qin J, Li G, Wu B, Wang C. Characteristics of the multiple replicon plasmid IncX1-X1 in multidrug-resistant Escherichia coli from Malayan pangolin (Manis javanica). Integrative Zoology, 2022. DOI: 10.1111/1749-4877.12637.
    [6] Stokes HW, Gillings MR. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiology Reviews, 2011, 35(5): 790-819.
    [7] Eiamphungporn W, Schaduangrat N, Malik AA, Nantasenamat C. Tackling the antibiotic resistance caused by class A β-Lactamases through the use of β-lactamase inhibitory protein. International Journal of Molecular Sciences, 2018, 19(8): 2222.
    [8] Karen B, Bradford PA. Epidemiology of beta-lactamase- producing pathogens. Clinical Microbiology Reviews, 2020, 33(2): e00047-19.
    [9] Chang HH, Cohen T, Grad YH, Hanage WP, O՚Brien TF, Lipsitch M. Origin and proliferation of multiple-drug resistance in bacterial pathogens. Microbiology and Molecular Biology Reviews, 2015, 79(1): 101-116.
    [10] Wang J, Ma ZB, Zeng ZL, Yang XW, Huang Y, Liu JH. Response to comment on “The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes”. Zoological Research, 2017, 38(4): 212.
    [11] Guenther S, Aschenbrenner K, Stamm I, Bethe A, Semmler T, Stubbe A, Stubbe M, Batsajkhan N, Glupczynski Y, Wieler LH, Ewers C. Comparable high rates of extended-spectrum-beta-lactamase-producing Escherichia coli in birds of prey from Germany and Mongolia. PLoS One, 2012, 7(12): e53039.
    [12] Hassell JM, Ward MJ, Muloi D, Bettridge JM, Phan H, Robinson TP, Ogendo A, Imboma T, Kiiru J, Kariuki S, Begon M, Kang՚ethe EK, Woolhouse MEJ, Fèvre EM. Deterministic processes structure bacterial genetic communities across an urban landscape. Nature Communications, 2019, 10(1): 2643.
    [13] Marcelino VR, Wille M, Hurt AC, González-Acuña D, Klaassen M, Schlub TE, Eden JS, Shi M, Iredell JR, Sorrell TC, Holmes EC. Meta-transcriptomics reveals a diverse antibiotic resistance gene pool in avian microbiomes. BMC Biology, 2019, 17(1): 31.
    [14] Cummins ML, Sanderson-Smith M, Newton P, Carlile N, Phalen DN, Maute K, Monahan LG, Hoye BJ, Djordjevic SP. Whole-genome sequence analysis of an extensively drug-resistant Salmonella enterica serovar Agona isolate from an Australian silver gull (Chroicocephalus novaehollandiae) reveals the acquisition of multidrug resistance plasmids. mSphere, 2020, 5(6): e00743-20.
    [15] Fashae K, Engelmann I, Monecke S, Braun SD, Ehricht R. Molecular characterisation of extended-spectrum β-lactamase producing Escherichia coli in wild birds and cattle, Ibadan, Nigeria. BMC Veterinary Research, 2021, 17(1): 33.
    [16] Yuan Y, Liang B, Jiang BW, Zhu LW, Wang TC, Li YG, Liu J, Guo XJ, Ji X, Sun Y. Migratory wild birds carrying multidrug-resistant Escherichia coli as potential transmitters of antimicrobial resistance in China. PLoS One, 2021, 16(12): e0261444.
    [17] Páll E, Niculae M, Brudașcă GF, Ravilov RK, Șandru CD, Cerbu C, Olah D, Zăblău S, Potârniche AV, Spinu M, Duca G, Rusu M, Rzewuska M, Vasiu A. Assessment and antibiotic resistance profiling in Vibrio species isolated from wild birds captured in Danube delta biosphere reserve, Romania. Antibiotics (Basel, Switzerland), 2021, 10(3): 333.
    [18] Ruiz-Ripa L, Gómez P, Alonso CA, Camacho MC, Ramiro Y, De La Puente J, Fernández-Fernández R, Quevedo MÁ, Blanco JM, Báguena G, Zarazaga M, Höfle U, Torres C. Frequency and characterization of antimicrobial resistance and virulence genes of coagulase-negative Staphylococci from wild birds in Spain. Detection of tst-carrying S. sciuri isolates. Microorganisms, 2020, 8(9): 1317.
    [19] CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 31st ed.
    [20] The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters, version 10.0, 2021.
    [21] Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nature Methods, 2015, 12(8): 733-735.
    [22] Ashton PM, Nair S, Dallman T, Rubino S, Rabsch W, Mwaigwisya S, Wain J, O՚Grady J. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nature Biotechnology, 2015, 33(3): 296-300.
    [23] Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics, 2011, 27(7): 1009-1010.
    [24] Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Research, 2004, 14(7): 1394-1403.
    [25] Bertels F, Silander OK, Pachkov M, Rainey PB, Van Nimwegen E. Automated reconstruction of whole-genome phylogenies from short-sequence reads. Molecular Biology and Evolution, 2014, 31(5): 1077-1088.
    [26] Borges CA, Beraldo LG, Maluta RP, Cardozo MV, Barboza KB, Guastalli EAL, Kariyawasam S, DebRoy C, Ávila FA. Multidrug-resistant pathogenic Escherichia coli isolated from wild birds in a veterinary hospital. Avian Pathology, 2017, 46(1): 76-83.
    [27] Carroll D, Wang J, Fanning S, McMahon BJ. Antimicrobial resistance in wildlife: implications for public health. Zoonoses and Public Health, 2015, 62(7): 534-542.
    [28] Rybak B, Krawczyk B, Furmanek-Blaszk B, Wysocka M, Fordon M, Ziolkowski P, Meissner W, Stepniewska K, Sikorska K. Antibiotic resistance, virulence, and phylogenetic analysis of Escherichia coli strains isolated from free-living birds in human habitats. PLoS One, 2022, 17(1): e0262236.
    [29] Oteo J, Mencía A, Bautista V, Pastor N, Lara N, González-González F, García-Peña FJ, Campos J. Colonization with Enterobacteriaceae-producing ESBLs, AmpCs, and OXA-48 in wild avian species, Spain 2015-2016. Microbial Drug Resistance (Larchmont, N.Y.), 2018, 24(7): 932-938.
    [30] Rodrigues JGC, Nair HP, O՚Kane C, Walker CA. Prevalence of multidrug resistance in Pseudomonas spp. isolated from wild bird feces in an urban aquatic environment. Ecology and Evolution, 2021, 11(20): 14303-14311.
    [31] Aksomaitiene J, Ramonaite S, Tamuleviciene E, Novoslavskij A, Alter T, Malakauskas M. Overlap of antibiotic resistant Campylobacter jejuni MLST genotypes isolated from humans, broiler products, dairy cattle and wild birds in Lithuania. Frontiers in Microbiology, 2019, 10: 1377.
    [32] Bradford PA. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clinical Microbiology Reviews, 2001, 14(4): 933-951.
    [33] Lee JH, Bae IK, Lee SH. New definitions of extended-spectrum β-lactamase conferring worldwide emerging antibiotic resistance. Medicinal Research Reviews, 2012, 32(1): 216-232.
    [34] Bradford PA. Automated thermal cycling is superior to traditional methods for nucleotide sequencing of bla (SHV) genes. Antimicrobial Agents and Chemotherapy, 1999, 43(12): 2960-2963.
    [35] Nüesch-Inderbinen MT, Kayser FH, Hächler H. Survey and molecular genetics of SHV beta-lactamases in Enterobacteriaceae in Switzerland: two novel enzymes, SHV-11 and SHV-12. Antimicrobial Agents and Chemotherapy, 1997, 41(5): 943–949.
    [36] Miryala SK, Anbarasu A, Ramaiah S. Role of SHV-11, a class A β-lactamase, gene in multidrug resistance among Klebsiella pneumoniae strains and understanding its mechanism by gene network analysis. Microbial Drug Resistance: Larchmont, N. Y., 2020, 26(8): 900-908.
    [37] Guo QL, Tomich AD, McElheny CL, Cooper VS, Stoesser N, Wang MG, Sluis-Cremer N, Doi Y. Glutathione-S-transferase FosA6 of Klebsiella pneumoniae origin conferring fosfomycin resistance in ESBL-producing Escherichia coli. Journal of Antimicrobial Chemotherapy, 2016, 71(9): 2460-2465.
    [38] Ma Y, Xu X, Guo Q, Wang P, Wang W, Wang M. Characterization of fosA5, a new plasmid-mediated fosfomycin resistance gene in Escherichia coli. Letters in Applied Microbiology, 2015, 60(3): 259-264.
    [39] Hata MM, Suzuki M, Matsumoto M, Takahashi M, Sato K, Ibe S, Sakae K. Cloning of a novel gene for quinolone resistance from a transferable plasmid in Shigella flexneri 2b. Antimicrobial Agents and Chemotherapy, 2005, 49(2): 801-803.
    [40] Huang Z, Mi Z, Wang C. A novel beta-lactamase gene, LAP-2, produced by an Enterobacter cloacae clinical isolate in China. The Journal of Hospital Infection, 2008, 70(1): 95-96.
    [41] Aldema ML, McMurry LM, Walmsley AR, Levy SB. Purification of the Tn10-specified tetracycline efflux antiporter TetA in a native state as a polyhistidine fusion protein. Molecular Microbiology, 1996, 19(1): 187-195.
    [42] Wu W, Feng Y, Tang G, Qiao F, McNally A, Zong Z. NDM Metallo-β-lactamases and their bacterial producers in health care settings. Clinical Microbiology Reviews, 2019, 32(2): e00115-18.
    [43] Bourouis A, Ben Moussa M, Belhadj O. Multidrug-resistant phenotype and isolation of a novel SHV-beta-lactamase variant in a clinical isolate of Enterobacter cloacae. Journal of Biomedical Science, 2015, 22(1): 27.
    [44] Simner PJ, Antar AAR, Hao S, Gurtowski J, Tamma PD, Rock C, Opene BNA, Tekle T, Carroll KC, Schatz MC, Timp W. Antibiotic pressure on the acquisition and loss of antibiotic resistance genes in Klebsiella pneumoniae. Journal of Antimicrobial Chemotherapy, 2018, 73(7): 1796-1803.
    [45] Doumith M, Findlay J, Hirani H, Hopkins KL, Livermore DM, Dodgson A, Woodford N. Major role of pKpQIL-like plasmids in the early dissemination of KPC-type carbapenemases in the UK. Journal of Antimicrobial Chemotherapy, 2017, 72(8): 2241-2248.
    [46] Song Y, Tong Z, Wang J, Wang L, Guo Z, Han Y, Zhang J, Pei D, Zhou D, Qin H, Pang X, Han Y, Zhai J, Li M, Cui B, Qi Z, Jin L, Dai R, Chen F, Li S, Ye C, Du Z, Lin W, Wang J, Yu J, Yang H, Wang J, Huang P, Yang R. Complete genome sequence of Yersinia pestis strain 91001, an isolate a virulent to humans. DNA Research: an International Journal for Rapid Publication of Reports on Genes and Genomes, 2004, 11(3): 179-197.
    [47] Soler Bistué AJC, Birshan D, Tomaras AP, Dandekar M, Tran T, Newmark J, Bui D, Gupta N, Hernandez K, Sarno R, Zorreguieta A, Actis LA, Tolmasky ME. Klebsiella pneumoniae multiresistance plasmid pMET1: similarity with the Yersinia pestis plasmid pCRY and integrative conjugative elements. PLoS One, 2008, 3(3): e1800.
    [48] Pawlowski AC, Stogios PJ, Koteva K, Skarina T, Evdokimova E, Savchenko A, Wright GD. The evolution of substrate discrimination in macrolide antibiotic resistance enzymes. Nature Communications, 2018, 9(1): 112.
    [49] Thungapathra M, Amita, Sinha KK, Chaudhuri SR, Garg P, Ramamurthy T, Nair GB, Ghosh A. Occurrence of antibiotic resistance gene cassettes aac(6ʹ)-Ib, dfrA5, dfrA12, and ereA2 in class Ⅰ integrons in non-O1, non-O139Vibrio cholerae strains in India. Antimicrobial Agents and Chemotherapy, 2002, 46(9): 2948-2955.
    [50] Chen YT, Lauderdale TL, Liao TL, Shiau YR, Shu HY, Wu KM, Yan JJ, Su IJ, Tsai SF. Sequencing and comparative genomic analysis of pK29, a 269-kilobase conjugative plasmid encoding CMY-8 and CTX-M-3 beta-lactamases in Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 2007, 51(8): 3004-3007.
    [51] Kazama H, Hamashima H, Sasatsu M, Arai T. Characterization of the antiseptic-resistance gene qacEΔ1 isolated from clinical and environmental isolates of Vibrio parahaemolyticus and Vibrio cholerae non-O1. FEMS Microbiology Letters, 1999, 174(2): 379-384.
    [52] Martínez N, Mendoza MC, Rodríguez I, Soto S, Bances M, Rodicio MR. Detailed structure of integrons and transposons carried by large conjugative plasmids responsible for multidrug resistance in diverse genomic types of Salmonella enterica serovar Brandenburg. Journal of Antimicrobial Chemotherapy, 2007, 60(6): 1227-1234.
    [53] Zhao JY, Mu XD, Zhu YQ, Xi LJ, Xiao ZJ. Identification of an integron containing the quinolone resistance gene qnrA1 in Shewanella xiamenensis. FEMS Microbiology Letters, 2015, 362(18): fnv146.
    [54] Petrova M, Gorlenko Z, Mindlin S. Tn5045, a novel integron-containing antibiotic and chromate resistance transposon isolated from a permafrost bacterium. Research in Microbiology, 2011, 162(3): 337-345.
    [55] Billard-Pomares T, Fouteau S, Jacquet ME, Roche D, Barbe V, Castellanos M, Bouet JY, Cruveiller S, Médigue C, Blanco J, Clermont O, Denamur E, Branger C. Characterization of a P1-like bacteriophage carrying an SHV-2 extended-spectrum β-lactamase from an Escherichia coli strain. Antimicrobial Agents and Chemotherapy, 2014, 58(11): 6550-6557.
    [56] García-Fernández A, Fortini D, Veldman K, Mevius D, Carattoli A. Characterization of plasmids harbouring qnrS1, qnrB2 and qnrB19 genes in Salmonella. Journal of Antimicrobial Chemotherapy, 2008, 63(2): 274-281.
    [57] Guo QL, Spychala CN, McElheny CL, Doi Y. Comparative analysis of an IncR plasmid carrying armA, blaDHA-1 and qnrB4 from Klebsiella pneumoniae ST37 isolates. Journal of Antimicrobial Chemotherapy, 2016, 71(4): 882-886.
    [58] Kocsis E, Gužvinec M, Butić I, Krešić S, Crnek SŠ, Tambić A, Cornaglia G, Mazzariol A. blaNDM-1 carriage on IncR plasmid in Enterobacteriaceae strains. Microbial Drug Resistance: Larchmont, N. Y., 2016, 22(2): 123-128.
    [59] Qu DF, Shen Y, Hu LF, Jiang XY, Yin Z, Gao B, Zhao YE, Yang WH, Yang HY, Han JZ, Zhou DS. Comparative analysis of KPC-2-encoding chimera plasmids with multi-replicon IncR: IncpA1763-KPC: IncN1 or IncFIIpHN7A8:IncpA1763-KPC:IncN1. Infection and Drug Resistance, 2019, 12: 285-296.
    [60] Compain F, Frangeul L, Drieux L, Verdet C, Brisse S, Arlet G, Decré D. Complete nucleotide sequence of two multidrug-resistant IncR plasmids from Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 2014, 58(7): 4207-4210.
    [61] Liao W, Liu Y, Zhang W. Virulence evolution, molecular mechanisms of resistance and prevalence of ST11 carbapenem-resistant Klebsiella pneumoniae in China: a review over the last 10 years. Journal of Global Antimicrobial Resistance, 2020, 23: 174–180.
    [62] Fu P, Tang Y, Li G, Yu L, Wang Y, Jiang X. Pandemic spread of blaKPC-2 among Klebsiella pneumoniae ST11 in China is associated with horizontal transfer mediated by IncFII-like plasmids. International Journal of Antimicrobial Agents, 2019, 54(2): 117–124.
    [63] Feng Y, Liu L, McNally A, Zong ZY. Coexistence of three blaKPC-2 genes on an IncF/IncR plasmid in ST11Klebsiella pneumoniae. Journal of Global Antimicrobial Resistance, 2019, 17: 90-93.
    [64] Kim SY, Ko KS. Diverse Plasmids Harboring blaCTX-M-15 in Klebsiella pneumoniae ST11 Isolates from several Asian countries. Microbial drug resistance (Larchmont, N.Y.), 2019, 25(2): 227-232.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王雪,王猛,赵佳男,季芳,武斌,王学静,秦建华,王承民. 野生鸟类分离的多重耐药肺炎克雷伯氏菌(Klebsiella pneumoniae)耐药基因分子进化特征研究[J]. 微生物学报, 2022, 62(11): 4477-4493

复制
分享
文章指标
  • 点击次数:249
  • 下载次数: 974
  • HTML阅读次数: 786
  • 引用次数: 0
历史
  • 收稿日期:2022-03-19
  • 最后修改日期:2022-04-28
  • 在线发布日期: 2022-11-11
  • 出版日期: 2022-11-04
文章二维码