海洋奇古菌门认知的拓展:从新类群到新功能
作者:
基金项目:

国家自然科学基金(92051115,41976101);山东省自然科学基金(ZR2022YQ38);中央高校基本科研业务费专项(202141009)


The expanding knowledge of marine Thaumarchaeota: from new groups to new functions
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [115]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    奇古菌门是全球海洋中的重要微生物类群,在海洋原核浮游生物中的比例可达20%–40%。作为一类化能无机自养微生物,奇古菌门成员可通过氧化氨获得能量,实现不依赖光照的无机碳固定,在碳、氮等元素的地球化学循环中起关键作用。奇古菌门是海洋中氨氧化反应的主要执行者,其化能合成的有机质是海洋特别是深海环境中微生物的重要能量来源。随着研究的逐步深入,有关该类群生理代谢特性的认知不断被拓展,包括奇古菌门异养代谢的揭示、不具氨氧化能力类群在深海中的发现,以及最新报道的奇古菌门在厌氧条件下介导氧气、氧化亚氮和氮气的产生等。这些研究揭示了奇古菌门参与海洋生物地球化学循环和气候变化调节的新机制,为围绕该类群的深入探究和培养提供了新的思路和方向。本文从群落组成、环境适应、生态功能、进化历史和培养现状等方面综述了近年来有关海洋奇古菌门的新发现和新认识,以期增进对该类群的了解。

    Abstract:

    Thaumarchaeota is an important microbial group in the global ocean, accounting for 20%-40% of the total marine prokaryotic plankton. As a group of chemautotrophs, Thaumarchaeota members are able to oxidize ammonia and leverage the released energy to fix inorganic carbon in the dark. They thus play a crucial role in the biogeochemical cycling of carbon and nitrogen. Thaumarchaeota are the major driver of ammonia oxidization in the ocean. The primary production by Thaumarchaeota through chemosynthesis serves as an important energy source for marine microorganisms, especially those in the deep-sea environments. With increasing efforts, the knowledge on the physiological and metabolic features of this group is expanded. This includes the evidence of heterotrophic metabolism, the discovery of thaumarchaeotal groups with no ammonia oxidation capacity in the deep sea, and the production of oxygen, nitrous oxide, and dinitrogen under anaerobic conditions. These studies reveal the new mechanisms of Thaumarchaeota in participating in the marine biogeochemical cycling and regulating climate change, which provide novel insights and perspectives for further studies and culture. In this study, we review new discoveries about marine Thaumarchaeota in recent years in terms of community composition, environmental adaptation, ecological function, evolutionary history, and culture status, with an aim of improving the understanding of this group.

    参考文献
    [1] Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain:the primary kingdoms. PNAS, 1977, 74(11):5088-5090.
    [2] Karner MB, DeLong EF, Karl DM. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature, 2001, 409(6819):507-510.
    [3] Nunoura T, Takaki Y, Hirai M, Shimamura S, Makabe A, Koide O, Kikuchi T, Miyazaki J, Koba K, Yoshida N, Sunamura M, Ken TK. Hadal biosphere:insight into the microbial ecosystem in the deepest ocean on Earth. PNAS, 2015, 112(11):E1230-E1236.
    [4] DeLong EF. Archaea in coastal marine environments. PNAS, 1992, 89(12):5685-5689.
    [5] Fuhrman JA, McCallum K, Davis AA. Novel major archaebacterial group from marine plankton. Nature, 1992, 356(6365):148-149.
    [6] Preston CM, Wu KY, Molinski TF, DeLong EF. A psychrophilic crenarchaeon inhabits a marine sponge:Cenarchaeum symbiosum gen. nov., sp. nov.. PNAS, 1996, 93(13):6241-6246.
    [7] Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P. Mesophilic crenarchaeota:proposal for a third archaeal phylum, the Thaumarchaeota. Nature Reviews Microbiology, 2008, 6(3):245-252.
    [8] Jurgens G, Glöckner FO, Amann R, Saano A, Montonen L, Likolammi M, Münster U. Identification of novel archaea in bacterioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization1. FEMS Microbiology Ecology, 2000, 34(1):45-56.
    [9] Liu YY, Liu JW, Yao P, Ge TT, Qiao YL, Zhao MX, Zhang XH. Distribution patterns of ammonia-oxidizing archaea and bacteria in sediments of the eastern China marginal seas. Systematic and Applied Microbiology, 2018, 41(6):658-668.
    [10] Könneke M, Bernhard AE, De La Torre JR, Walker CB, Waterbury JB, Stahl DA. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 2005, 437(7058):543-546.
    [11] Bayer B, Hansman RL, Bittner MJ, Noriega-Ortega BE, Niggemann J, Dittmar T, Herndl GJ. Ammonia-oxidizing archaea release a suite of organic compounds potentially fueling prokaryotic heterotrophy in the ocean. Environmental Microbiology, 2019, 21(11):4062-4075.
    [12] 张丽梅, 贺纪正. 一个新的古菌类群——奇古菌门(Thaumarchaeota). 微生物学报, 2012, 52(4):411-421. Zhang LM, He JZ. A novel archaeal phylum:Thaumarchaeota—a review. Acta Microbiologica Sinica, 2012, 52(4):411-421. (in Chinese)
    [13] 洪义国, 何翔, 吴佳鹏, 刘晓晗. 海洋氨氧化古菌及其驱动的碳氮生物地球化学循环过程研究进展. 中国科学院大学学报, 2020, 37(4):433-441. Hong YG, He X, Wu JP, Liu XH. Carbon-nitrogen biogeochemical cycle processes driven by ammonia-oxidizing archaea in marine environment. Journal of University of Chinese Academy of Sciences, 2020, 37(4):433-441. (in Chinese)
    [14] Qin W, Zheng Y, Zhao F, Wang YL, Urakawa H, Martens-Habbena W, Liu HD, Huang XW, Zhang XX, Nakagawa T, Mende DR, Bollmann A, Wang BZ, Zhang Y, Amin SA, Nielsen JL, Mori K, Takahashi R, Virginia Armbrust E, Winkler MKH, DeLong EF, Li M, Lee PH, Zhou JZ, Zhang CL, Zhang T, Stahl DA, Ingalls AE. Alternative strategies of nutrient acquisition and energy conservation map to the biogeography of marine ammonia-oxidizing archaea. The ISME Journal, 2020, 14(10):2595-2609.
    [15] Zhong HH, Lehtovirta-Morley L, Liu JW, Zheng YF, Lin HY, Song DL, Todd JD, Tian JW, Zhang XH. Novel insights into the Thaumarchaeota in the deepest oceans:their metabolism and potential adaptation mechanisms. Microbiome, 2020, 8(1):78.
    [16] Aylward FO, Santoro AE. Heterotrophic Thaumarchaea with small genomes are widespread in the dark ocean. mSystems, 2020, 5(3):e00415-e00420.
    [17] Reji LT, Francis CA. Metagenome-assembled genomes reveal unique metabolic adaptations of a basal marine Thaumarchaeota lineage. The ISME Journal, 2020, 14(8):2105-2115.
    [18] Wang P, Li MC, Dong L, Zhang C, Xie W. Comparative genomics of Thaumarchaeota from deep-sea sponges reveal their niche adaptation. Frontiers in Microbiology, 2022, 13:869834.
    [19] Zou DY, Wan R, Han LL, Xu MN, Liu Y, Liu HB, Kao SJ, Li M. Genomic characteristics of a novel species of ammonia-oxidizing archaea from the Jiulong River Estuary. Applied and Environmental Microbiology, 2020, 86(18):e00736-20.
    [20] Liu JW, Zhu SQ, Liu XY, Yao P, Ge TT, Zhang XH. Spatiotemporal dynamics of the archaeal community in coastal sediments:assembly process and co-occurrence relationship. The ISME Journal, 2020, 14(6):1463-1478.
    [21] Danovaro R, Molari M, Corinaldesi C, Dell'Anno A. Macroecological drivers of archaea and bacteria in benthic deep-sea ecosystems. Science Advances, 2016, 2(4):e1500961.
    [22] Hoshino T, Doi H, Uramoto GI, Wörmer L, Adhikari RR, Xiao N, Morono Y, D'Hondt S, Hinrichs KU, Inagaki F. Global diversity of microbial communities in marine sediment. PNAS, 2020, 117(44):27587-27597.
    [23] Vuillemin A, Wankel SD, Coskun ÖK, Magritsch T, Vargas S, Estes ER, Spivack AJ, Smith DC, Pockalny R, Murray RW, D'Hondt S, Orsi WD. Archaea dominate oxic subseafloor communities over multimillion-year time scales. Science Advances, 2019, 5(6):eaaw4108.
    [24] Jorgensen SL, Hannisdal B, Lanzén A, Baumberger T, Flesland K, Fonseca R, Ovreås L, Steen IH, Thorseth IH, Pedersen RB, Schleper C. Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. PNAS, 2012, 109(42):E2846-E2855.
    [25] Zhao R, Dahle H, Ramírez GA, Jørgensen SL. Indigenous ammonia-oxidizing archaea in oxic subseafloor oceanic crust. mSystems, 2020, 5(2):e00758-19.
    [26] Liu JW, Yu SL, Zhao MX, He BY, Zhang XH. Shifts in archaeaplankton community structure along ecological gradients of Pearl Estuary. FEMS Microbiology Ecology, 2014, 90(2):424-435.
    [27] Kerou M, Ponce-Toledo RI, Zhao R, Abby SS, Hirai M, Nomaki H, Takaki Y, Nunoura T, Jørgensen SL, Schleper C. Genomes of Thaumarchaeota from deep sea sediments reveal specific adaptations of three independently evolved lineages. The ISME Journal, 2021, 15(9):2792-2808.
    [28] De La Torre JR, Walker CB, Ingalls AE, Könneke M, Stahl DA. Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environmental Microbiology, 2008, 10(3):810-818.
    [29] Pachiadaki MG, Yakimov MM, LaCono V, Leadbetter E, Edgcomb V. Unveiling microbial activities along the halocline of Thetis, a deep-sea hypersaline anoxic basin. The ISME Journal, 2014, 8(12):2478-2489.
    [30] Gubry-Rangin C, Kratsch C, Williams TA, McHardy AC, Embley TM, Prosser JI, MacQueen DJ. Coupling of diversification and pH adaptation during the evolution of terrestrial Thaumarchaeota. PNAS, 2015, 112(30):9370-9375.
    [31] Ren ML, Wang JJ. Phylogenetic divergence and adaptation of Nitrososphaeria across lake depths and freshwater ecosystems. The ISME Journal, 2022, 16(6):1491-1501.
    [32] Qin W, Amin SA, Martens-Habbena W, Walker CB, Urakawa H, Devol AH, Ingalls AE, Moffett JW, Armbrust EV, Stahl DA. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. PNAS, 2014, 111(34):12504-12509.
    [33] Horak REA, Qin W, Bertagnolli AD, Nelson A, Heal KR, Han H, Heller M, Schauer AJ, Jeffrey WH, Armbrust EV, Moffett JW, Ingalls AE, Stahl DA, Devol AH. Relative impacts of light, temperature, and reactive oxygen on thaumarchaeal ammonia oxidation in the North Pacific Ocean. Limnology and Oceanography, 2018, 63(2):741-757.
    [34] Liu Q, Tolar BB, Ross MJ, Cheek JB, Sweeney CM, Wallsgrove NJ, Popp BN, Hollibaugh JT. Light and temperature control the seasonal distribution of Thaumarchaeota in the South Atlantic bight. The ISME Journal, 2018, 12(6):1473-1485.
    [35] Luo HW, Tolar BB, Swan BK, Zhang CL, Stepanauskas R, Ann Moran M, Hollibaugh JT. Single-cell genomics shedding light on marine Thaumarchaeota diversification. The ISME Journal, 2014, 8(3):732-736.
    [36] Santoro AE, Dupont CL, Richter RA, Craig MT, Carini P, McIlvin MR, Yang Y, Orsi WD, Moran DM, Saito MA. Genomic and proteomic characterization of "Candidatus Nitrosopelagicus brevis":an ammonia-oxidizing archaeon from the open ocean. PNAS, 2015, 112(4):1173-1178.
    [37] Sintes E, Bergauer K, De Corte D, Yokokawa T, Herndl GJ. Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the ocean. Environmental Microbiology, 2013, 15(5):1647-1658.
    [38] Kellom M, Pagliara S, Richards TA, Santoro AE. Exaggerated trans-membrane charge of ammonium transporters in nutrient-poor marine environments. Open Biology, 2022, 12(7):220041.
    [39] Wang BZ, Qin W, Ren Y, Zhou X, Jung MY, Han P, Eloe-Fadrosh EA, Li M, Zheng Y, Lu L, Yan X, Ji JB, Liu Y, Liu LM, Heiner C, Hall R, Martens-Habbena W, Herbold CW, Rhee SK, Bartlett DH, Huang L, Ingalls AE, Wagner M, Stahl DA, Jia ZJ. Expansion of Thaumarchaeota habitat range is correlated with horizontal transfer of ATPase operons. The ISME Journal, 2019, 13(12):3067-3079.
    [40] Martens-Habbena W, Berube PM, Urakawa H, De La Torre JR, Stahl DA. Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria. Nature, 2009, 461(7266):976-979.
    [41] Qin W, Meinhardt KA, Moffett JW, Devol AH, Virginia Armbrust E, Ingalls AE, Stahl DA. Influence of oxygen availability on the activities of ammonia-oxidizing archaea. Environmental Microbiology Reports, 2017, 9(3):250-256.
    [42] Lam P, Lavik G, Jensen MM, Van De Vossenberg J, Schmid M, Woebken D, Gutiérrez D, Amann R, Jetten MSM, Kuypers MMM. Revising the nitrogen cycle in the Peruvian oxygen minimum zone. PNAS, 2009, 106(12):4752-4757.
    [43] Bristow L, Dalsgaard T, Tiano L, Mills DB, Ulloa O, Canfield D, Revsbech N, Thamdrup B. High sensitivity of ammonia and nitrite oxidation rates to nanomolar oxygen concentrations. Mineralogical Magazine, 2013, 77(5):775.
    [44] Könneke M, Schubert DM, Brown PC, Hügler M, Standfest S, Schwander T, Von Borzyskowski LS, Erb TJ, Stahl DA, Berg IA. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation. PNAS, 2014, 111(22):8239-8244.
    [45] Yakimov MM, Cono VL, Smedile F, DeLuca TH, Juárez S, Ciordia S, Fernández M, Albar JP, Ferrer M, Golyshin PN, Giuliano L. Contribution of crenarchaeal autotrophic ammonia oxidizers to the dark primary production in Tyrrhenian deep waters (central Mediterranean Sea). The ISME Journal, 2011, 5(6):945-961.
    [46] Wuchter C, Abbas B, Coolen MJL, Herfort L, Van Bleijswijk J, Timmers P, Strous M, Teira E, Herndl GJ, Middelburg JJ, Schouten S, Sinninghe Damsté JS. Archaeal nitrification in the ocean. PNAS, 2006, 103(33):12317-12322.
    [47] Tolar BB, Herrmann J, Bargar JR, Van Den Bedem H, Wakatsuki S, Francis CA. Integrated structural biology and molecular ecology of N-cycling enzymes from ammonia-oxidizing archaea. Environmental Microbiology Reports, 2017, 9(5):484-491.
    [48] Li M, Cao HL, Hong YG, Gu JD. Spatial distribution and abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in mangrove sediments. Applied Microbiology and Biotechnology, 2011, 89(4):1243-1254.
    [49] Wu JP, Hong YG, He X, Liu XH, Ye JQ, Jiao LJ, Li YB, Wang Y, Ye F, Yang YH, Du J. Niche differentiation of ammonia-oxidizing archaea and related autotrophic carbon fixation potential in the water column of the South China Sea. iScience, 2022, 25(5):104333.
    [50] Caranto JD, Lancaster KM. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase. PNAS, 2017, 114(31):8217-8222.
    [51] Kozlowski JA, Stieglmeier M, Schleper C, Klotz MG, Stein LY. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota. The ISME Journal, 2016, 10(8):1836-1845.
    [52] Stein LY. Insights into the physiology of ammonia-oxidizing microorganisms. Current Opinion in Chemical Biology, 2019, 49:9-15.
    [53] Santoro AE, Richter RA, Dupont CL. Planktonic marine archaea. Annual Review of Marine Science, 2019, 11:131-158.
    [54] Tolar BB, Ross MJ, Wallsgrove NJ, Liu Q, Aluwihare LI, Popp BN, Hollibaugh JT. Contribution of ammonia oxidation to chemoautotrophy in Antarctic coastal waters. The ISME Journal, 2016, 10(11):2605-2619.
    [55] Peng XF, Fuchsman CA, Jayakumar A, Warner MJ, Devol AH, Ward BB. Revisiting nitrification in the Eastern Tropical South Pacific:a focus on controls. Journal of Geophysical Research:Oceans, 2016, 121(3):1667-1684.
    [56] Shiozaki T, Ijichi M, Isobe K, Hashihama F, Nakamura KI, Ehama M, Hayashizaki KI, Takahashi K, Hamasaki K, Furuya K. Nitrification and its influence on biogeochemical cycles from the equatorial Pacific to the Arctic Ocean. The ISME Journal, 2016, 10(9):2184-2197.
    [57] Hutchins DA, Capone DG. The marine nitrogen cycle:new developments and global change. Nature Reviews Microbiology, 2022, 20(7):401-414.
    [58] Wu L, Chen XM, Wei W, Liu YW, Wang DB, Ni BJ. A critical review on nitrous oxide production by ammonia-oxidizing archaea. Environmental Science & Technology, 2020, 54(15):9175-9190.
    [59] Löscher CR, Kock A, Könneke M, LaRoche J, Bange HW, Schmitz RA. Production of oceanic nitrous oxide by ammonia-oxidizing archaea. Biogeosciences, 2012, 9(7):2419-2429.
    [60] Yoshikawa C, Abe H, Aita MN, Breider F, Kuzunuki K, Toyoda S, Ogawa NO, Suga H, Ohkouchi N, Danielache SO, Wakita M, Honda MC, Yoshida N. Insight into nitrous oxide production processes in the western North Pacific based on a marine ecosystem isotopomer model. Journal of Oceanography, 2016, 72(3):491-508.
    [61] Trimmer M, Chronopoulou PM, Maanoja ST, Upstill-Goddard RC, Kitidis V, Purdy KJ. Nitrous oxide as a function of oxygen and archaeal gene abundance in the North Pacific. Nature Communications, 2016, 7:13451.
    [62] Kraft B, Jehmlich N, Larsen M, Bristow LA, Könneke M, Thamdrup B, Canfield DE. Oxygen and nitrogen production by an ammonia-oxidizing archaeon. Science, 2022, 375(6576):97-100.
    [63] Offre P, Spang A, Schleper C. Archaea in biogeochemical cycles. Annual Review of Microbiology, 2013, 67:437-457.
    [64] Seyler LM, McGuinness LR, Gilbert JA, Biddle JF, Gong D, Kerkhof LJ. Discerning autotrophy, mixotrophy and heterotrophy in marine TACK archaea from the North Atlantic. FEMS Microbiology Ecology, 2018, 94(3):fiy014.
    [65] Ouverney CC, Fuhrman JA. Marine planktonic archaea take up amino acids. Applied and Environmental Microbiology, 2000, 66(11):4829-4833.
    [66] Ingalls AE, Shah SR, Hansman RL, Aluwihare LI, Santos GM, Druffel ERM, Pearson A. Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon. PNAS, 2006, 103(17):6442-6447.
    [67] Kim JG, Park SJ, Sinninghe Damsté JS, Schouten S, Rijpstra WIC, Jung MY, Kim SJ, Gwak JH, Hong H, Si OJ, Lee S, Madsen EL, Rhee SK. Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea. PNAS, 2016, 113(28):7888-7893.
    [68] Kitzinger K, Padilla CC, Marchant HK, Hach PF, Herbold CW, Kidane AT, Könneke M, Littmann S, Mooshammer M, Niggemann J, Petrov S, Richter A, Stewart FJ, Wagner M, Kuypers MMM, Bristow LA. Cyanate and urea are substrates for nitrification by Thaumarchaeota in the marine environment. Nature Microbiology, 2019, 4(2):234-243.
    [69] Damashek J, Bayer B, Herndl GJ, Wallsgrove NJ, Allen T, Popp BN, Hollibaugh JT. Limited accessibility of nitrogen supplied as amino acids, amides, and amines as energy sources for marine Thaumarchaeota. bioRxiv, 2021, DOI:10.1101/2021.07.22.453390.
    [70] Jiao NZ, Herndl GJ, Hansell DA, Benner R, Kattner G, Wilhelm SW, Kirchman DL, Weinbauer MG, Luo TW, Chen F, Azam F. Microbial production of recalcitrant dissolved organic matter:long-term carbon storage in the global ocean. Nature Reviews Microbiology, 2010, 8(8):593-599.
    [71] Heal KR, Qin W, Ribalet F, Bertagnolli AD, Coyote-Maestas W, Hmelo LR, Moffett JW, Devol AH, Armbrust EV, Stahl DA, Ingalls AE. Two distinct pools of B12 analogs reveal community interdependencies in the ocean. PNAS, 2017, 114(2):364-369.
    [72] Metcalf WW, Griffin BM, Cicchillo RM, Gao JT, Janga SC, Cooke HA, Circello BT, Evans BS, Martens-Habbena W, Stahl DA, Van Der Donk WA. Synthesis of methylphosphonic acid by marine microbes:a source for methane in the aerobic ocean. Science, 2012, 337(6098):1104-1107.
    [73] Karl DM, Beversdorf L, Björkman KM, Church MJ, Martinez A, Delong EF. Aerobic production of methane in the sea. Nature Geoscience, 2008, 1(7):473-478.
    [74] Abby SS, Kerou M, Schleper C. Ancestral reconstructions decipher major adaptations of ammonia-oxidizing archaea upon radiation into moderate terrestrial and marine environments. mBio, 2020, 11(5):e02371-20.
    [75] Yang YY, Zhang CL, Lenton TM, Yan XM, Zhu MY, Zhou MD, Tao JC, Phelps TJ, Cao ZW. The evolution pathway of ammonia-oxidizing archaea shaped by major geological events. Molecular Biology and Evolution, 2021, 38(9):3637-3648.
    [76] Jung MY, Islam MA, Gwak JH, Kim JG, Rhee SK. Nitrosarchaeum koreense gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon member of the phylum Thaumarchaeota isolated from agricultural soil. International Journal of Systematic and Evolutionary Microbiology, 2018, 68(10):3084-3095.
    [77] Ren ML, Feng XY, Huang YJ, Wang H, Hu Z, Clingenpeel S, Swan BK, Fonseca MM, Posada D, Stepanauskas R, Hollibaugh JT, Foster PG, Woyke T, Luo HW. Phylogenomics suggests oxygen availability as a driving force in Thaumarchaeota evolution. The ISME Journal, 2019, 13(9):2150-2161.
    [78] Stahl DA. The path leading to the discovery of the ammoniaoxidizing archaea. Environmental Microbiology, 2020, 22(11):4507-4519.
    [79] Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu DY, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO. Environmental genome shotgun sequencing of the Sargasso Sea. Science, 2004, 304(5667):66-74.
    [80] Park BJ, Park SJ, Yoon DN, Schouten S, Sinninghe Damsté JS, Rhee SK. Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria. Applied and Environmental Microbiology, 2010, 76(22):7575-7587.
    [81] Qin W, Heal KR, Ramdasi R, Kobelt JN, Martens-Habbena W, Bertagnolli AD, Amin SA, Walker CB, Urakawa H, Könneke M, Devol AH, Moffett JW, Armbrust EV, Jensen GJ, Ingalls AE, Stahl DA. Nitrosopumilus maritimus gen. nov., sp. nov., Nitrosopumilus cobalaminigenes sp. nov., Nitrosopumilus oxyclinae sp. nov., and Nitrosopumilus ureiphilus sp. nov., four marine ammonia-oxidizing archaea of the phylum Thaumarchaeota. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(12):5067-5079.
    [82] Blainey PC, Mosier AC, Potanina A, Francis CA, Quake SR. Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis. PLoS One, 2011, 6(2):e16626.
    [83] Mosier AC, Allen EE, Kim M, Ferriera S, Francis CA. Genome sequence of "Candidatus Nitrosoarchaeum limnia" BG20, a low-salinity ammonia-oxidizing archaeon from the San Francisco Bay Estuary. Journal of Bacteriology, 2012, 194(8):2119-2120.
    [84] Mosier AC, Allen EE, Kim M, Ferriera S, Francis CA. Genome sequence of "Candidatus Nitrosopumilus salaria" BD31, an ammonia-oxidizing archaeon from the San Francisco Bay Estuary. Journal of Bacteriology, 2012, 194(8):2121-2122.
    [85] Elling FJ, Könneke M, Mußmann M, Greve A, Hinrichs KU. Influence of temperature, pH, and salinity on membrane lipid composition and TEX86 of marine planktonic thaumarchaeal isolates. Geochimica et Cosmochimica Acta, 2015, 171:238-255.
    [86] Santoro AE, Casciotti KL. Enrichment and characterization of ammonia-oxidizing archaea from the open ocean:phylogeny, physiology and stable isotope fractionation. The ISME Journal, 2011, 5(11):1796-1808.
    [87] Bayer B, Vojvoda J, Offre P, Alves RJE, Elisabeth NH, Garcia JA, Volland JM, Srivastava A, Schleper C, Herndl GJ. Physiological and genomic characterization of two novel marine thaumarchaeal strains indicates niche differentiation. The ISME Journal, 2016, 10(5):1051-1063.
    [88] Bayer B, Vojvoda J, Reinthaler T, Reyes C, Pinto M, Herndl GJ. Nitrosopumilus adriaticus sp. nov. and Nitrosopumilus piranensis sp. nov., two ammonia-oxidizing archaea from the Adriatic Sea and members of the class Nitrososphaeria. International Journal of Systematic and Evolutionary Microbiology, 2019, 69(7):1892-1902.
    [89] Ahlgren NA, Chen YY, Needham DM, Parada AE, Sachdeva R, Trinh V, Chen T, Fuhrman JA. Genome and epigenome of a novel marine Thaumarchaeota strain suggest viral infection, phosphorothioation DNA modification and multiple restriction systems. Environmental Microbiology, 2017, 19(6):2434-2452.
    [90] Nakagawa T, Koji M, Hosoyama A, Yamazoe A, Tsuchiya Y, Ueda S, Takahashi R, Stahl DA. Nitrosopumilus zosterae sp. nov., an autotrophic ammonia-oxidizing archaeon of phylum Thaumarchaeota isolated from coastal eelgrass sediments of Japan. International Journal of Systematic and Evolutionary Microbiology, 2021, 71(8):10.1099/ijsem.0.004961.
    [91] Matsutani N, Nakagawa T, Nakamura K, Takahashi R, Yoshihara K, Tokuyama T. Enrichment of a novel marine ammonia-oxidizing archaeon obtained from sand of an eelgrass zone. Microbes and Environments, 2011, 26(1):23-29.
    [92] Tourna M, Stieglmeier M, Spang A, Könneke M, Schintlmeister A, Urich T, Engel M, Schloter M, Wagner M, Richter A, Schleper C. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. PNAS, 2011, 108(20):8420-8425.
    [93] Stieglmeier M, Klingl A, Alves RJE, Rittmann SKMR, Melcher M, Leisch N, Schleper C. Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt_8):2738-2752.
    [94] Jung MY, Park SJ, Min D, Kim JS, Rijpstra WIC, Sinninghe Damsté JS, Kim GJ, Madsen EL, Rhee SK. Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of mesophilic crenarchaeal group I.1a from an agricultural soil. Applied and Environmental Microbiology, 2011, 77(24):8635-8647.
    [95] Kim JG, Jung MY, Park SJ, Rijpstra WIC, Sinninghe Damsté JS, Madsen EL, Min D, Kim JS, Kim GJ, Rhee SK. Cultivation of a highly enriched ammonia-oxidizing archaeon of thaumarchaeotal group I.1b from an agricultural soil. Environmental Microbiology, 2012, 14(6):1528-1543.
    [96] Lebedeva EV, Hatzenpichler R, Pelletier E, Schuster N, Hauzmayer S, Bulaev A, Grigor'eva NV, Galushko A, Schmid M, Palatinszky M, Le Paslier D, Daims H, Wagner M. Enrichment and genome sequence of the group I.1a ammonia-oxidizing archaeon "Ca. Nitrosotenuis uzonensis" representing a clade globally distributed in thermal habitats. PLoS One, 2013, 8(11):e80835.
    [97] Zhalnina KV, Dias R, Leonard MT, Dorr De Quadros P, Camargo FAO, Drew JC, Farmerie WG, Daroub SH, Triplett EW. Genome sequence of Candidatus Nitrososphaera evergladensis from group I.1b enriched from Everglades soil reveals novel genomic features of the ammonia-oxidizing archaea. PLoS One, 2014, 9(7):e101648.
    [98] Jung MY, Park SJ, Kim SJ, Kim JG, Sinninghe Damsté JS, Jeon CO, Rhee SK. A mesophilic, autotrophic, ammonia-oxidizing archaeon of thaumarchaeal group I.1a cultivated from a deep oligotrophic soil horizon. Applied and Environmental Microbiology, 2014, 80(12):3645-3655.
    [99] Lehtovirta-Morley LE, Stoecker K, Vilcinskas A, Prosser JI, Nicol GW. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. PNAS, 2011, 108(38):15892-15897.
    [100] Lehtovirta-Morley LE, Ge CR, Ross J, Yao HY, Nicol GW, Prosser JI. Characterisation of terrestrial acidophilic archaeal ammonia oxidisers and their inhibition and stimulation by organic compounds. FEMS Microbiology Ecology, 2014, 89(3):542-552.
    [101] Palatinszky M, Herbold C, Jehmlich N, Pogoda M, Han P, Von Bergen M, Lagkouvardos I, Karst SM, Galushko A, Koch H, Berry D, Daims H, Wagner M. Cyanate as an energy source for nitrifiers. Nature, 2015, 524(7563):105-108.
    [102] Hatzenpichler R, Lebedeva EV, Spieck E, Stoecker K, Richter A, Daims H, Wagner M. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. PNAS, 2008, 105(6):2134-2139.
    [103] Li YY, Ding K, Wen XH, Zhang B, Shen B, Yang YF. A novel ammonia-oxidizing archaeon from wastewater treatment plant:its enrichment, physiological and genomic characteristics. Scientific Reports, 2016, 6:23747.
    [104] Jung MY, Kim JG, Rijpstra WIC, Madsen EL, Kim SJ, Hong H, Si OJ, Kerou M, Schleper C, Rhee SK. A hydrophobic ammonia-oxidizing archaeon of the Nitrosocosmicus clade isolated from coal tar-contaminated sediment. Environmental Microbiology Reports, 2016, 8(6):983-992.
    [105] Lehtovirta-Morley LE, Ross J, Hink L, Weber EB, Gubry-Rangin C, Thion C, Prosser JI, Nicol GW. Isolation of 'Candidatus Nitrosocosmicus franklandus', a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration. FEMS Microbiology Ecology, 2016, 92(5):fiw057.
    [106] Sauder LA, Albertsen M, Engel K, Schwarz J, Nielsen PH, Wagner M, Neufeld JD. Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system. The ISME Journal, 2017, 11(5):1142-1157.
    [107] Chen HY, Yue YY, Jin WB, Zhou X, Wang QL, Gao SH, Xie GJ, Du S, Tu RJ, Han SF, Guo KX. Enrichment and characteristics of ammonia-oxidizing archaea in wastewater treatment process. Chemical Engineering Journal, 2017, 323:465-472.
    [108] Daebeler A, Herbold CW, Vierheilig J, Sedlacek CJ, Pjevac P, Albertsen M, Kirkegaard RH, de la Torre JR, Daims H, Wagner M. Cultivation and genomic analysis of "Candidatus Nitrosocaldus islandicus," an obligately thermophilic, ammonia-oxidizing thaumarchaeon from a hot spring biofilm in graendalur valley, Iceland. Frontiers in Microbiology, 2018, 9:193.
    [109] Abby SS, Melcher M, Kerou M, Krupovic M, Stieglmeier M, Rossel C, Pfeifer K, Schleper C. Candidatus Nitrosocaldus cavascurensis, an ammonia oxidizing, extremely thermophilic archaeon with a highly mobile genome. Frontiers in Microbiology, 2018, 9:28.
    [110] Sauder LA, Engel K, Lo CC, Chain P, Neufeld JD. "Candidatus Nitrosotenuis aquarius," an ammonia-oxidizing archaeon from a freshwater aquarium biofilter. Applied and Environmental Microbiology, 2018, 84(19):e01430-18.
    [111] Liu LT, Liu MF, Jiang YM, Lin WT, Luo JF. Production and excretion of polyamines to tolerate high ammonia, a case study on soil ammonia-oxidizing archaeon "Candidatus Nitrosocosmicus agrestis". mSystems, 2021, 6(1):e01003-e01020.
    [112] Liu LT, Li SR, Han JM, Lin WT, Luo JF. A two-step strategy for the rapid enrichment of Nitrosocosmicus-like ammonia-oxidizing Thaumarchaea. Frontiers in Microbiology, 2019, 10:875.
    [113] Chu YJ, Lee JY, Shin SR, Kim GJ. A method for cell culture and maintenance of ammonia-oxidizing archaea in agar stab. Indian Journal of Microbiology, 2015, 55(4):460-463.
    [114] Klein T, Poghosyan L, Barclay JE, Murrell JC, Hutchings MI, Lehtovirta-Morley LE. Cultivation of ammonia-oxidising archaea on solid medium. FEMS Microbiology Letters, 2022, 369(1):fnac029.
    [115] Alves RJE, Minh BQ, Urich T, von Haeseler A, Schleper C. Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nature Communications, 2018, 9:1517.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘吉文,刘姣,黄付燕,任高杨,张晓华. 海洋奇古菌门认知的拓展:从新类群到新功能[J]. 微生物学报, 2022, 62(12): 4628-4645

复制
分享
文章指标
  • 点击次数:380
  • 下载次数: 1396
  • HTML阅读次数: 1159
  • 引用次数: 0
历史
  • 收稿日期:2022-09-15
  • 最后修改日期:2022-10-26
  • 在线发布日期: 2022-12-08
文章二维码