特基拉芽孢杆菌XK29挥发物2-甲基丁酸对甘薯长喙壳菌的抑制作用研究
作者:
基金项目:

徐州市科技计划项目(KC21141);国家自然科学基金(31900110);江苏高校“青蓝工程”项目(2019)


Inhibitory effects of volatile 2-methylbutyric acid produced by Bacillus tequilensis XK29 on Ceratocystis fimbriata
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】研究特基拉芽孢杆菌挥发物2-甲基丁酸对甘薯长喙壳菌的抑制作用,评价2-甲基丁酸对甘薯黑斑病的防治效果。【方法】采用I-分隔平皿和气相抑菌体系,研究不同剂量的2-甲基丁酸对甘薯长喙壳菌菌丝生长和孢子萌发的抑制作用;使用乳酸酚棉蓝染色观察2-甲基丁酸对甘薯长喙壳菌显微形态的影响;利用荧光探针钙荧光白和溴化丙锭检测2-甲基丁酸对甘薯长喙壳菌细胞壁结构与细胞膜通透性的影响;使用荧光探针2,7-二氯荧光素二乙酸酯检测甘薯长喙壳菌胞内活性氧含量变化;测定谷胱甘肽含量分析病原菌应对氧化损伤能力的改变;通过线粒体脱氢酶活力和丙酮酸含量的检测,分析2-甲基丁酸对甘薯长喙壳菌线粒体功能和能量代谢的影响;评价2-甲基丁酸在甘薯黑斑病防治中的使用效果。【结果】2-甲基丁酸显著抑制甘薯长喙壳菌菌丝生长和孢子萌发,降低其产孢能力,导致菌丝折叠弯曲并形成不连续的空腔。2-甲基丁酸使甘薯长喙壳菌的细胞壁结构改变,细胞膜通透性增加,胞内活性氧含量升高,谷胱甘肽含量显著降低,使病原菌应对氧化损伤的能力下降,线粒体脱氢酶活力和丙酮酸含量显著降低,诱发线粒体功能障碍,干扰细胞能量代谢,最终导致细胞死亡。此外,2-甲基丁酸对甘薯黑斑病也具有良好的防治作用。【结论】2-甲基丁酸对甘薯长喙壳菌具有显著的抑制作用,可作为安全高效的气相抑菌材料用于新型熏蒸制剂的研发。

    Abstract:

    [Objective] To investigate the inhibitory effects of 2-methylbutyric acid produced by Bacillus tequilensis XK29 on Ceratocystis fimbriata, and to evaluate its control effects on sweet potato black rot. [Methods] I-plates (2-section) and gas-phase antimicrobial system were used to study the inhibitory effects of 2-methylbutyric acid on mycelial growth and spore germination of C.fimbriata, and its effect on the micro-morphology of C.fimbriata was observed by lactophenol cotton blue staining. Fluorescent probes calcofluor white and propidium iodide were adopted to detect the influences of 2-methylbutyric acid on cell wall structure and cell membrane permeability of C.fimbriata, and the change of intracellular reactive oxygen species of C.fimbriata was explored by fluorescence probe 2ʹ,7ʹ-dichlorodihydrofluorescein diacetate. Additionally, the content of glutathione was determined to analyze the ability of the pathogenic fungus to deal with oxidative damage, and the activity of mitochondrial dehydrogenase and the content of pyruvic acid were determined to clarify the effects of 2-methylbutyric acid on mitochondrial function and energy metabolism of C.fimbriata. In the end, we evaluated the application of 2-methylbutyric acid to the control of sweet potato black rot. [Results] 2-methylbutyric acid significantly inhibited the mycelial growth and spore germination of C.fimbriata, thus reducing the sporulation ability of C.fimbriata and resulting in folded mycelia and discontinuous cavities. The cell wall structure was changed, and the membrane permeability and the content of intracellular reactive oxygen species were increased. 2-methylbutyric acid markedly reduced the content of glutathione, thereby decreasing the ability of pathogens to deal with oxidative damages. Furthermore, the activity of mitochondrial dehydrogenase and the content of pyruvic acid dropped, which induced mitochondrial dysfunction and interfered with cell energy metabolism, thus leading to cell death. In addition, 2-methylbutyric acid controlled the sweet potato black rot.[Conclusion] 2-methylbutyric acid had remarkable inhibitory effects on C.fimbriata. It could be used as a safe and efficient gas-phase antimicrobial material for the development of new fumigants.

    参考文献
    [1] Mohanraj R, Sivasankar S. Sweet potato[Ipomoea batatas (L.) Lam]-a valuable medicinal food:a review. Journal of Medicinal Food, 2014, 17(7):733-741.
    [2] 弋凤蕊, 刘瑞涵, 李仁崑. 中国甘薯产业竞争力区域比较研究. 农业展望, 2021, 17(7):61-66. Yi FR, Liu RH, Li RK. Competitive regional comparison of China's sweet potato industry. Agricultural Outlook, 2021, 17(7):61-66. (in Chinese)
    [3] 杨冬静, 孙厚俊, 张成玲, 徐振, 赵永强, 谢逸萍. 解淀粉芽孢杆菌菌株XZ-1对甘薯黑斑病的生物防治效果研究. 西南农业学报, 2018, 31(4):736-741. Yang DJ, Sun HJ, Zhang CL, Xu Z, Zhao YQ, Xie YP. Biological control of Bacillus amyloliquefacien strain XZ-1 against black rot on sweet potato. Southwest China Journal of Agricultural Sciences, 2018, 31(4):736-741. (in Chinese)
    [4] Wamalwa LN, Cheseto X, Ouna E, Kaplan F, Maniania NK, Machuka J, Torto B, Ghislain M. Toxic ipomeamarone accumulation in healthy parts of sweet potato[Ipomoea batatas (L.) Lam] storage roots upon infection by Rhizopus stolonifer. Journal Agricultural and Food Chemistry, 2015, 63(1), 335-342.
    [5] 张德胜, 乔奇, 田雨婷, 王爽, 秦艳红, 王永江, 张振臣. 5种杀菌剂对储藏期甘薯黑斑病的防效及对薯块的安全性评价. 植物保护, 2015, 41(6):221-224. Zhang DS, Qiao Q, Tian YT, Wang S, Qin YH, Wang YJ, Zhang ZC. Control efficacy of five fungicides to black rot of sweet potato in storage and safety assessment to storage roots. Plant Protection, 2015, 41(6):221-224. (in Chinese)
    [6] Steinberg G, Schuster M, Gurr SJ, Schrader TA, Schrader M, Wood M, Early A, Kilaru S. A lipophilic cation protects crops against fungal pathogens by multiple modes of action. Nature Communications, 2020, 11(1):1608.
    [7] Netzker T, Shepherdson EMF, Zambri MP, Elliot MA. Bacterial volatile compounds:functions in communication, cooperation, and competition. Annual Review of Microbiology, 2020, 74:409-430.
    [8] Sharifi R, Ryu CM. Sniffing bacterial volatile compounds for healthier plants. Current Opinion in Plant Biology, 2018, 44:88-97.
    [9] Xie S, Zang H, Wu H, Uddin RF, Gao X. Antibacterial effects of volatiles produced by Bacillus strain D13 against Xanthomonas oryzae pv.oryzae. Molecular Plant Pathology, 2018, 19(1):49-58.
    [10] Boukaew S, Cheirsilp B, Prasertsan P, Yossan S. Antifungal effect of volatile organic compounds produced by Streptomyces salmonis PSRDC-09 against anthracnose pathogen Colletotrichum gloeosporioides PSU-03 in postharvest chili fruit. Journal of Applied Microbiology, 2021, 131(3):1452-1463.
    [11] Gatson JW, Benz BF, Chandrasekaran C, Satomi M, Venkateswaran K, Hart ME. Bacillus tequilensis sp. nov., isolated from a 2000-year-old Mexican shaft-tomb, is closely related to Bacillus subtilis. International Journal of Systematic and Evolutionary Microbiology, 2006, 56(7):1475-1484.
    [12] Cuellar-Gaviria TZ, González-Jaramillo LM, Villegas-Escobar V. Role of Bacillus tequilensis EA-CB0015 cells and lipopeptides in the biological control of black Sigatoka disease. Biological Control, 2020, 155:104523.
    [13] Zhou H, Zhu H, Ren Z, Li X, Zhong J, Liu E. Efficacy of Bacillus tequilensis strain JN-369 to biocontrol of rice blast and enhance rice growth. Biological Control, 2021, 160:104652.
    [14] Xu M, Guo J, Li T, Zhang C, Peng X, Xing K, Qin S. Antibiotic effects of volatiles produced by Bacillus tequilensis XK29 against the black spot disease caused by Ceratocystis fimbriata in postharvest sweet potato. Journal of Agricultural and Food Chemistry, 2021, 69(44):13045-13054.
    [15] Forney CF, Jordan MA, Cue KR. Identification of aroma-active compounds of whole and macerated 'Honeycrisp' and 'Ambrosia' apples. Acta Horticulturae, 2016, 1120:137-142.
    [16] Api AM, Belmonte F, Belsito D, Botelho D, Bruze M, Burton GA, Buschmann J, Dagli ML, Date M, Dekant W, Deodhar C, Fryer AD, Gadhia S, Jones L, Joshi K, La Cava S, Lapczynski A, Lavelle M, Liebler DC, Na M, O'Brien D, Penning TM, Ritacco G, Romine J, Sadekar N, Salvito D, Schultz TW, Sipes IG, Sullivan G, Thakkar Y, Tokura Y, Tsang S. RIFM fragrance ingredient safety assessment, 2-methylbutyric acid, CAS registry number 116-53-0. Food and Chemical Toxicology, 2019, 130 Suppl 1:110574.
    [17] 中国人民共和国国家卫生和计划生育委员会. GB 2760-2014食品安全国家标准食品添加剂使用标准.椠洗憬?夭??叆痺杈椾琬愠′???丮愼杢慲椾獛栱椸?????楡瑮猭畇楡歲楣?卡???甠牄慥潮歴慯?吠??伬朠慍睩慴?奨??卬愠瑋潅????呥栠敃?戠慓捯瑣敨牡椠潍汔漬朠楆捩慲汫?灮牳漠灊敌爮琠楃敯獮?潩晴??楮??慳捴楩汭汵畬獡??楮??獮瑥牵慴楲湡?吠??????慥湮摴?慦湩慢汥祲猠楤獥?潲晡?瑡桴敩?癮漠汢慹琠楤汯敳?慮湧琠楢晲畡湮杣慨汥?挭潣浨灡潩畮渠摶獯?敡浴楩瑬瑥攠摦?扴祴?琠桡楣獩?扳愮挠瑉攺牣楯慭???楩??楮漠捷潩湴瑨爠潢汲?卮捣楨敥湤挭散??楩????ど???????????????????戠牳?孵??嵥?坩慮氠歲敵牭??????畡湴牣潨??????慲獥灳漮映甼湩朾楊湯?楲湮摡畬挠敯摦?捄敡汩汲?眠慓汣汩?据档慥渼术敩猾?漠昲‰?椱??愱渰搴椨搶愩??椷??猭瀶攷挵椵攮猼?楲渾晛氱甹敝渠捘敩獮?洠態挬爠潘灩桮慧朠教?椠湌瑩敵爠慙挬琠楚潨湡獮???椬??牨潥湮琠楘攬爠獌?椠湘??敍汩污畯氠慘爬?慆湥摮??湚昬攠捐瑥楮潧渠??椠捑物潮戠楓漮氠潆杵祮??楣??????て???ぴ??????扩牴?孳??崠??潡栠慩湮獤歵楣??????睭祢敲牡??????慴祵敲瑢敡?????慧睡物敮湳捴攠??????潡汴汯楣湹獳???????换潲浩浡潴湡?洯敩挾栮愠渼楩猾浃?潲晢?捨敹汤汲畡汴慥爠?摯敬慹瑭桥?楳渼搯畩挾攬搠′戰礱?戬愠挱琹攲爺椹挵椭搱愰氳?愼湢瑲椾扛椲漰瑝椠捚獨???椠??攠汌汩??楊?????き?????は?????????????戬爠?孥??崠??漬戠慐祥慮獧栠楘?????潚湙搬漠????唠敋栬愠牑慩?丠??传瑁潮歴潩穦慵睮慧?卬??呦獦略橣楴?乯??奶慯杬楡桴慩獬桥椠????坮慩瑣愠湣慯扭数?乵???渠摰潲杯敤湵潣略獤?牢敹愠挼瑩椾癐敳?潵硤祯杭敯湮?獳瀠散捨楬敯獲?楲獡?慨湩?椼洯灩漾爠瑳慵湢瑳?洮攠搼楩愾瑡潵牲?潯晦?浣楩捥潮湳愼稯潩氾攠?慐湓琭椴昱甠湯杮愠汯?敩晤晡整捩瑶???楴??湳瑳椠浡楮捤爠潭扩楴慯汣??杮敤湲瑩獡?愠湤摹??桵敮浣潴瑩桯敮爠慯灦礠??椾????ぴは??????ㄠて?????????????戠爼?嬾??嵳??慣物??㈠????????潳牴慲汹攠獡?????潹汳敩汯汬?????慩爾挬??日???愠?刷申椺稱‰????愮瀼汢潲眾楛琲稱?丠???敗牂測??????湌摌攬稠??桡敯挠慗??????椠瑙潌挮栠漨湅搩爭椲愭汨?杸汥畮瑡慬琬栠楡潳渠敡?晰敯慴瑥畮牴敩獡??牮敡杴畵汲慡瑬椠潡湮?慩湦摵?牧潡汬攠?楯湭?摯極獮敤愬猠敩???楢??楳漠挼桩椾流楳捰慥?敧瑩??極潳瀠桦祬獡楶捵慳??捩琾愠??楯????づ???????は???????????????戠牭?孴?っ嵨??楤?奩??匠桥慮潥?塧??塭略????坬敩楳?央??塩甾????坮慡湬朠????呣敵慬?瑵牲敡敬?潡楮汤?敆硯桯楤戠楃瑨獥?慩湳瑴楲晹甼港杩愾氬?愲挰琱椹瘬椠琶礷?愴朩愺椱渱猳琸??椱??漮琼牢祲琾楛猲′捝椠湚敨牡敮慧??椬??扩礠?慊昬映敌捩瑵椠湙杆?洠楌瑩漠捘桙漬渠摚牨楡慮???楍??潆潥摮??桚敚洬椠獐瑥牮祧??椬???㈠ず?????????㈠?????手爮?孖??嵡?婩桬慥漠?偲???楩?倠??坭異?卵??婳栠潰畲????婥桤椠?剹???愾潐????噯潭汯慮瑡楳氠散?潬牯杲慯湲楡捰?捩潳洼瀯潩甾渠摳獵??噰伮?猼? ̄晡牵潲浥??楡??慥据楳氼氯畩猾?獓畐打琭椴氱椠獡??楢???????牡敬搠畦捵敭?慧湡瑮桴牳愠捴湯漠獣敯?慴湲摯?攠氼楩挾楃瑥?慡捴瑯楣癹敳?摩敳映敦湩獭敢?物敡獴灡漼港獩放猠?楮渠?桯慳牴癨敡獲瑶敥摳??楳??楥瑴挠桰楯??楴??晳爮甠椼瑩猾???楲??????砠灁牧敲獩獣??楴??????????????????istry, 2019, 67(13):3702-3710.
    [23] Pócsi I, Prade RA, Penninckx MJ. Glutathione, altruistic metabolite in fungi. Advances in Microbial Physiology, 2004, 49:1-76.
    [24] Hua SST, Beck JJ, Sarreal SBL, Wai GE. The major volatile compound 2-phenylethanol from the biocontrol yeast, Pichia anomala, inhibits growth and expression of aflatoxin biosynthetic genes of Aspergillus flavus. Mycotoxin Research, 2014, 30(2):71-78.
    [25] Osaki C, Yamaguchi K, Urakawa S, Nakash
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李腾杰,梁孙妍,郭健衡,徐悦,张春媚,秦盛,邢珂. 特基拉芽孢杆菌XK29挥发物2-甲基丁酸对甘薯长喙壳菌的抑制作用研究[J]. 微生物学报, 2022, 62(12): 5018-5028

复制
分享
文章指标
  • 点击次数:265
  • 下载次数: 1129
  • HTML阅读次数: 1017
  • 引用次数: 0
历史
  • 收稿日期:2022-04-02
  • 最后修改日期:2022-04-22
  • 在线发布日期: 2022-12-08
文章二维码