肽聚糖的生物合成及其调控机制研究进展
作者:
基金项目:

国家自然科学基金(32270044);浙江省自然科学基金(LY20C010003);浙江省高校基本科研业务费项目(RF-A2020006)


Peptidoglycan biosynthesis and the regulatory mechanism
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [107]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    肽聚糖(peptidoglycan)是细菌细胞壁的重要组成部分,对于维持细胞形态、大小及存活至关重要;同时,肽聚糖是众多常用抗生素的作用靶点。在细菌的正常生长过程中,肽聚糖不断地合成和水解,为了保证细胞壁的完整性,肽聚糖生物合成过程必然受到严谨的时空调控。肽聚糖的生物合成及其调控机制是微生物学中重要的基础研究之一,近年来国内外研究团队在该领域取得了突破性研究进展。基于此,本文综述了肽聚糖的从头合成和循环再利用过程,并重点阐述了肽聚糖合成关键酶——肽聚糖合酶及其调控机制的最新研究进展。最后,本文对未来需要加强研究的方向进行了展望。

    Abstract:

    Peptidoglycan is the most important component of bacterial cell wall, as it is crucial for the maintenance of cell morphology, cell size and cell survival. Meanwhile, peptidoglycan is the target of many commonly used antibiotics. The synthesis and hydrolysis of peptidoglycan occur simultaneously in bacteria under normal growth conditions. For the sake of cell wall integrity, the biosynthesis of peptidoglycan needs to be spatiotemporally controlled. Peptidoglycan biosynthesis and the regulatory mechanism are among the most fundamental research topics in microbiology. In recent years, researchers around the world have made remarkable progress in this field. On this basis, this review summarizes the de novo synthesis of peptidoglycan and peptidoglycan recycling pathway, and emphasizes the research advances in peptidoglycan synthases (key enzymes involved in peptidoglycan synthesis) and their regulatory mechanisms. Finally, this review puts forward the questions to be addressed in the future.

    参考文献
    [1] EGAN AJF, ERRINGTON J, VOLLMER W. Regulation of peptidoglycan synthesis and remodelling[J]. Nature Reviews Microbiology, 2020, 18(8):446-460.
    [2] TYPAS A, BANZHAF M, GROSS CA, VOLLMER W. From the regulation of peptidoglycan synthesis to bacterial growth and morphology[J]. Nature Reviews Microbiology, 2012, 10(2):123-136.
    [3] LOVERING AL, SAFADI SS, STRYNADKA NCJ. Structural perspective of peptidoglycan biosynthesis and assembly[J]. Annual Review of Biochemistry, 2012, 81:451-478.
    [4] DÖRR T. Understanding tolerance to cell wall-active antibiotics[J]. Annals of the New York Academy of Sciences, 2021, 1496(1):35-58.
    [5] PARK JT, UEHARA T. How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan)[J]. Microbiology and Molecular Biology Reviews, 2008, 72(2):211-227.
    [6] KUMAR S, MOLLO A, KAHNE D, RUIZ N. The bacterial cell wall:from lipid II flipping to polymerization[J]. Chemical Reviews, 2022, 122(9):8884-8910.
    [7] ZHAO H, PATEL V, HELMANN JD, DÖRR T. Don't let sleeping dogmas lie:new views of peptidoglycan synthesis and its regulation[J]. Molecular Microbiology, 2017, 106(6):847-860.
    [8] MOHAMMADI T, van DAM V, SIJBRANDI R, VERNET T, ZAPUN A, BOUHSS A, DIEPEVEEN-DE BRUIN M, NGUYEN-DISTÈCHE M, de KRUIJFF B, BREUKINK E. Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane[J]. The EMBO Journal, 2011, 30(8):1425-1432.
    [9] MOHAMMADI T, SIJBRANDI R, LUTTERS M, VERHEUL J, MARTIN NI, den BLAAUWEN T, de KRUIJFF B, BREUKINK E. Specificity of the transport of lipid II by FtsW in Escherichia coli[J]. The Journal of Biological Chemistry, 2014, 289(21):14707-14718.
    [10] SHAM LT, BUTLER EK, LEBAR MD, KAHNE D, BERNHARDT TG, RUIZ N. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis[J]. Science, 2014, 345(6193):220-222.
    [11] KUK ACY, MASHALIDIS EH, LEE SY. Crystal structure of the MOP flippase MurJ in an inward-facing conformation[J]. Nature Structural & Molecular Biology, 2017, 24(2):171-176.
    [12] KUK ACY, HAO AL, GUAN ZQ, LEE SY. Visualizing conformation transitions of the Lipid II flippase MurJ[J]. Nature Communications, 2019, 10:1736.
    [13] ZHENG SD, SHAM LT, RUBINO FA, BROCK KP, ROBINS WP, MEKALANOS JJ, MARKS DS, BERNHARDT TG, KRUSE AC. Structure and mutagenic analysis of the lipid II flippase MurJ from Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(26):6709-6714.
    [14] MEESKE AJ, SHAM LT, KIMSEY H, KOO BM, GROSS CA, BERNHARDT TG, RUDNER DZ. MurJ and a novel lipid II flippase are required for cell wall biogenesis in Bacillus subtilis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(20):6437-6442.
    [15] SAUVAGE E, KERFF F, TERRAK M, AYALA JA, CHARLIER P. The penicillin-binding proteins:structure and role in peptidoglycan biosynthesis[J]. FEMS Microbiology Reviews, 2008, 32(2):234-258.
    [16] CHO H, WIVAGG CN, KAPOOR M, BARRY Z, ROHS PDA, SUH H, MARTO JA, GARNER EC, BERNHARDT TG. Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously[J]. Nature Microbiology, 2016, 1:16172.
    [17] MEESKE AJ, RILEY EP, ROBINS WP, UEHARA T, MEKALANOS JJ, KAHNE D, WALKER S, KRUSE AC, BERNHARDT TG, RUDNER DZ. SEDS proteins are a widespread family of bacterial cell wall polymerases[J]. Nature, 2016, 537(7622):634-638.
    [18] TAGUCHI A, WELSH MA, MARMONT LS, LEE W, SJODT M, KRUSE AC, KAHNE D, BERNHARDT TG, WALKER S. FtsW is a peptidoglycan polymerase that is functional only in complex with its cognate penicillin-binding protein[J]. Nature Microbiology, 2019, 4(4):587-594.
    [19] REICHMANN NT, TAVARES AC, SARAIVA BM, JOUSSELIN A, REED P, PEREIRA AR, MONTEIRO JM, SOBRAL RG, VANNIEUWENHZE MS, FERNANDES F, PINHO MG. SEDS-bPBP pairs direct lateral and septal peptidoglycan synthesis in Staphylococcus aureus[J]. Nature Microbiology, 2019, 4(8):1368-1377.
    [20] JOHNSON JW, FISHER JF, MOBASHERY S. Bacterial cell-wall recycling[J]. Annals of the New York Academy of Sciences, 2013, 1277(1):54-75.
    [21] VERMASSEN A, LEROY S, TALON R, PROVOT C, POPOWSKA M, DESVAUX M. Cell wall hydrolases in bacteria:insight on the diversity of cell wall amidases, glycosidases and peptidases toward peptidoglycan[J]. Frontiers in Microbiology, 2019, 10:331.
    [22] MUELLER EA, LEVIN PA. Bacterial cell wall quality control during environmental stress[J]. mBio, 2020, 11(5):e02456-20.
    [23] van HEIJENOORT J. Peptidoglycan hydrolases of Escherichia coli[J]. Microbiology and Molecular Biology Reviews, 2011, 75(4):636-663.
    [24] MUELLER EA, IKEN AG, ALI ÖZTÜRK M, WINKLE M, SCHMITZ M, VOLLMER W, di VENTURA B, LEVIN PA. The active repertoire of Escherichia coli peptidoglycan amidases varies with physiochemical environment[J]. Molecular Microbiology, 2021, 116(1):311-328.
    [25] BORISOVA M, GAUPP R, DUCKWORTH A, SCHNEIDER A, DALÜGGE D, MÜHLECK M, DEUBEL D, UNSLEBER S, YU WQ, MUTH G, BISCHOFF M, GÖTZ F, MAYER C. Peptidoglycan recycling in gram-positive bacteria is crucial for survival in stationary phase[J]. mBio, 2016, 7(5):e0092316.
    [26] DWORKIN J. The medium is the message:Interspecies and interkingdom signaling by peptidoglycan and related bacterial glycans[J]. Annual Review of Microbiology, 2014, 68:137-154.
    [27] IRAZOKI O, HERNANDEZ SB, CAVA F. Peptidoglycan muropeptides:release, perception, and functions as signaling molecules[J]. Frontiers in Microbiology, 2019, 10:500.
    [28] 袁雪, 孙欢, 丁超, 程水红, 傅立峰, 李学兵. 大肠杆菌细胞壁肽聚糖的化学修饰及荧光标记[J]. 微生物学报, 2020, 60(1):49-59. YUAN X, SUN H, DING C, CHENG SH, FU LF, LI XB. Chemical modification and fluorescence labeling of Escherichia coli cell wall peptidoglycan[J]. Acta Microbiologica Sinica, 2020, 60(1):49-59 (in Chinese).
    [29] YIN JH, SUN LL, DONG YY, CHI X, ZHU WM, QI SH, GAO HC. Expression of blaA underlies unexpected ampicillin-induced cell lysis of Shewanella oneidensis[J]. PLoS One, 2013, 8(3):e60460.
    [30] YIN JH, SUN YY, SUN YJ, YU ZL, QIU JP, GAO HC. Deletion of lytic transglycosylases increases beta-lactam resistance in Shewanella oneidensis[J]. Frontiers in Microbiology, 2018, 9:13.
    [31] 张婷. Shewanella oneidensis中细胞壁靶向抗生素诱导β-内酰胺酶表达的研究[D]. 杭州:浙江工业大学硕士学位论文, 2020. ZHANG T. Studies on β-lactamase expression induced by cell wall-targeting antibiotics in Shewanella oneidensis[D]. Hangzhou:Master's Thesis of Zhejiang University of Technology, 2020 (in Chinese)
    [32] TYPAS A, BANZHAF M, van den BERG van SAPAROEA B, VERHEUL J, BIBOY J, NICHOLS RJ, ZIETEK M, BEILHARZ K, KANNENBERG K, von RECHENBERG M, BREUKINK E, den BLAAUWEN T, GROSS CA, VOLLMER W. Regulation of peptidoglycan synthesis by outer-membrane proteins[J]. Cell, 2010, 143(7):1097-1109.
    [33] MCPHERSON DC, POPHAM DL. Peptidoglycan synthesis in the absence of class A penicillin-binding proteins in Bacillus subtilis[J]. Journal of Bacteriology, 2003, 185(4):1423-1431.
    [34] PARADIS-BLEAU C, MARKOVSKI M, UEHARA T, LUPOLI TJ, WALKER S, KAHNE DE, BERNHARDT TG. Lipoprotein cofactors located in the outer membrane activate bacterial cell wall polymerases[J]. Cell, 2010, 143(7):1110-1120.
    [35] SCHIFFER G, HÖLTJE JV. Cloning and characterization of PBP 1C, a third member of the multimodular class A penicillin-binding proteins of Escherichia coli[J]. Journal of Biological Chemistry, 1999, 274(45):32031-32039.
    [36] PEPPER ED, FARRELL MJ, FINKEL SE. Role of penicillin-binding protein 1b in competitive stationary-phase survival of Escherichia coli[J]. FEMS Microbiology Letters, 2006, 263(1):61-67.
    [37] KUMAR A, SARKAR SK, GHOSH D, GHOSH AS. Deletion of penicillin-binding protein 1b impairs biofilm formation and motility in Escherichia coli[J]. Research in Microbiology, 2012, 163(4):254-257.
    [38] RANJIT DK, JORGENSON MA, YOUNG KD. PBP1B glycosyltransferase and transpeptidase activities play different essential roles during the de novo regeneration of rod morphology in Escherichia coli[J]. Journal of Bacteriology, 2017, 199(7):e0061216.
    [39] DÖRR T, MÖLL A, CHAO MC, CAVA F, LAM H, DAVIS BM, WALDOR MK. Differential requirement for PBP1a and PBP1b in in vivo and in vitro fitness of Vibrio cholerae[J]. Infection and Immunity, 2014, 82(5):2115-2124.
    [40] LAM H, OH DC, CAVA F, TAKACS CN, CLARDY J, de PEDRO MA, WALDOR MK. D-amino acids govern stationary phase cell wall remodeling in bacteria[J]. Science, 2009, 325(5947):1552-1555.
    [41] MUELLER EA, EGAN AJ, BREUKINK E, VOLLMER W, LEVIN PA. Plasticity of Escherichia coli cell wall metabolism promotes fitness and antibiotic resistance across environmental conditions[J]. eLife, 2019, 8:e40754.
    [42] YIN JH, SUN YY, MAO YT, JIN M, GAO HC. PBP1a/LpoA but not PBP1b/LpoB are involved in regulation of the major β-lactamase gene blaA in Shewanella oneidensis[J]. Antimicrobial Agents and Chemotherapy, 2015, 59(6):3357-3364.
    [43] YIN JH, CAI JX, YUAN Z, WANG ZW, GAO HC, QIU JP, YU ZL. Deletion of PBP1a/LpoA complex compromises cell envelope integrity in Shewanella oneidensis[J]. FEMS Microbiology Letters, 2018, 365(12):fny128.
    [44] YIN JH, ZHANG T, CAI JX, LOU J, CHENG D, ZHOU WF, XU CY, LIU YQ, GAO HC, YU ZL. PBP1a glycosyltransferase and transpeptidase activities are both required for maintaining cell morphology and envelope integrity in Shewanella oneidensis[J]. FEMS Microbiology Letters, 2020, 367(3):fnaa026.
    [45] EMAMI K, GUYET A, KAWAI Y, DEVI J, WU LJ, ALLENBY N, DANIEL RA, ERRINGTON J. RodA as the missing glycosyltransferase in Bacillus subtilis and antibiotic discovery for the peptidoglycan polymerase pathway[J]. Nature Microbiology, 2017, 2:16253.
    [46] 李晨辰, 吴昊, 田开仁, 乔建军, 李艳妮. SEDS蛋白的结构与功能研究进展[J]. 中国细胞生物学学报, 2020, 42(6):1053-1062. LI CC, WU H, TIAN KR, QIAO JJ, LI YN. Research progress in the structure and function of SEDS protein[J]. Chinese Journal of Cell Biology, 2020, 42(6):1053-1062 (in Chinese).
    [47] LIECHTI GW, KURU E, HALL E, KALINDA A, BRUN YV, VANNIEUWENHZE M, MAURELLI AT. A new metabolic cell-wall labelling method reveals peptidoglycan in Chlamydia trachomatis[J]. Nature, 2014, 506(7489):507-510.
    [48] van TEESELING MCF, MESMAN RJ, KURU E, ESPAILLAT A, CAVA F, BRUN YV, VANNIEUWENHZE MS, KARTAL B, van NIFTRIK L. Anammox Planctomycetes have a peptidoglycan cell wall[J]. Nature Communications, 2015, 6:6878.
    [49] ATWAL S, CHUENKLIN S, BONDER EM, FLORES J, GILLESPIE JJ, DRISCOLL TP, SALJE J. Discovery of a diverse set of bacteria that build their cell walls without the canonical peptidoglycan polymerase aPBP[J]. mBio, 2021, 12(4):e0134221.
    [50] VIGOUROUX A, CORDIER B, ARISTOV A, ALVAREZ L, ÖZBAYKAL G, CHAZE T, OLDEWURTEL ER, MATONDO M, CAVA F, BIKARD D, van TEEFFELEN S. Class-A penicillin binding proteins do not contribute to cell shape but repair cell-wall defects[J]. eLife, 2020, 9:e51998.
    [51] PAZOS M, VOLLMER W. Regulation and function of class A penicillin-binding proteins[J]. Current Opinion in Microbiology, 2021, 60:80-87.
    [52] STRAUME D, PIECHOWIAK KW, KJOS M, HÅVARSTEIN LS. Class A PBPs:It is time to rethink traditional paradigms[J]. Molecular Microbiology, 2021, 116(1):41-52.
    [53] DUCRET A, GRANGEASSE C. Recent progress in our understanding of peptidoglycan assembly in Firmicutes[J]. Current Opinion in Microbiology, 2021, 60:44-50.
    [54] BANZHAF M, van den BERG van SAPAROEA B, TERRAK M, FRAIPONT C, EGAN A, PHILIPPE J, ZAPUN A, BREUKINK E, NGUYEN-DISTÈCHE M, den BLAAUWEN T, VOLLMER W. Cooperativity of peptidoglycan synthases active in bacterial cell elongation[J]. Molecular Microbiology, 2012, 85(1):179-194.
    [55] LUPOLI TJ, LEBAR MD, MARKOVSKI M, BERNHARDT T, KAHNE D, WALKER S. Lipoprotein activators stimulate Escherichia coli penicillin-binding proteins by different mechanisms[J]. Journal of the American Chemical Society, 2014, 136(1):52-55.
    [56] SHI HD, BRATTON BP, GITAI Z, HUANG KC. How to build a bacterial cell:MreB as the foreman of E. coli construction[J]. Cell, 2018, 172(6):1294-1305.
    [57] MARTINS A, CONTRERAS-MARTEL C, JANET-MAITRE M, MIYACHIRO MM, ESTROZI LF, TRINDADE DM, MALOSPIRITO CC, RODRIGUES-COSTA F, IMBERT L, JOB V, SCHOEHN G, ATTRÉE I, DESSEN A. Publisher correction:self-association of MreC as a regulatory signal in bacterial cell wall elongation[J]. Nature Communications, 2022, 13:329.
    [58] LIU XL, BIBOY J, CONSOLI E, VOLLMER W, den BLAAUWEN T. MreC and MreD balance the interaction between the elongasome proteins PBP2 and RodA[J]. PLoS Genetics, 2020, 16(12):e1009276.
    [59] MORGENSTEIN RM, BRATTON BP, NGUYEN JP, OUZOUNOV N, SHAEVITZ JW, GITAI Z. RodZ links MreB to cell wall synthesis to mediate MreB rotation and robust morphogenesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(40):12510-12515.
    [60] BERTSCHE U, KAST T, WOLF B, FRAIPONT C, AARSMAN MEG, KANNENBERG K, von RECHENBERG M, NGUYEN-DISTÈCHE M, den BLAAUWEN T, HÖLTJE JV, VOLLMER W. Interaction between two murein (peptidoglycan) synthases, PBP3 and PBP1B, in Escherichia coli[J]. Molecular Microbiology, 2006, 61(3):675-690.
    [61] GREENE NG, FUMEAUX C, BERNHARDT TG. Conserved mechanism of cell-wall synthase regulation revealed by the identification of a new PBP activator in Pseudomonas aeruginosa[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(12):3150-3155.
    [62] ERICKSON HP, ANDERSON DE, OSAWA M. FtsZ in bacterial cytokinesis:cytoskeleton and force generator all in one[J]. Microbiology and Molecular Biology Reviews, 2010, 74(4):504-528.
    [63] PICHOFF S, LUTKENHAUS J. Unique and overlapping roles for ZipA and FtsA in septal ring assembly in Escherichia coli[J]. The EMBO Journal, 2002, 21(4):685-693.
    [64] CAMERON TA, VEGA DE, YU CF, XIAO H, MARGOLIN W. ZipA uses a two-pronged FtsZ-binding mechanism necessary for cell division[J]. mBio, 2021, 12(6):e0252921.
    [65] DUBARRY N, POSSOZ C, BARRE FX. Multiple regions along the Escherichia coli FtsK protein are implicated in cell division[J]. Molecular Microbiology, 2010, 78(5):1088-1100.
    [66] BOES A, OLATUNJI S, BREUKINK E, TERRAK M. Regulation of the peptidoglycan polymerase activity of PBP1b by antagonist actions of the core divisome proteins FtsBLQ and FtsN[J]. mBio, 2019, 10(1):e0191218.
    [67] DU SS, PICHOFF S, LUTKENHAUS J. FtsEX acts on FtsA to regulate divisome assembly and activity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(34):E5052-E5061.
    [68] DU SS, HENKE W, PICHOFF S, LUTKENHAUS J. How FtsEX localizes to the Z ring and interacts with FtsA to regulate cell division[J]. Molecular Microbiology, 2019, 112(3):881-895.
    [69] BUDDELMEIJER N, BECKWITH J. A complex of the Escherichia coli cell division proteins FtsL, FtsB and FtsQ forms independently of its localization to the septal region[J]. Molecular Microbiology, 2004, 52(5):1315-1327.
    [70] EIAMPHUNGPORN W, HELMANN JD. The Bacillus subtilis sigma(M) regulon and its contribution to cell envelope stress responses[J]. Molecular Microbiology, 2008, 67(4):830-848.
    [71] HELMANN JD. Bacillus subtilis extracytoplasmic function (ECF) sigma factors and defense of the cell envelope[J]. Current Opinion in Microbiology, 2016, 30:122-132.
    [72] PATEL Y, ZHAO H, HELMANN JD. A regulatory pathway that selectively up-regulates elongasome function in the absence of class A PBPs[J]. eLife, 2020, 9:e57902.
    [73] TOYODA K, INUI M. Extracytoplasmic function sigma factor σD confers resistance to environmental stress by enhancing mycolate synthesis and modifying peptidoglycan structures in Corynebacterium glutamicum[J]. Molecular Microbiology, 2018, 107(3):312-329.
    [74] 蔡静晓. 希瓦氏菌中两个肽聚糖合成酶复合体的生理功能及补偿研究[D]. 杭州:浙江工业大学硕士学位论文, 2019. CAI JX. Study on physiological function and compensation effect of two peptidoglycan synthase complexes in Shewanella oneidensis[D]. Hangzhou:Master's Thesis of Zhejiang University of Technology, 2019 (in Chinese)
    [75] BISICCHIA P, NOONE D, LIOLIOU E, HOWELL A, QUIGLEY S, JENSEN T, JARMER H, DEVINE KM. The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis[J]. Molecular Microbiology, 2007, 65(1):180-200.
    [76] DÖRR T, ALVAREZ L, DELGADO F, DAVIS BM, CAVA F, WALDOR MK. A cell wall damage response mediated by a sensor kinase/response regulator pair enables beta-lactam tolerance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(2):404-409.
    [77] BERNAL-CABAS M, AYALA JA, RAIVIO TL. The Cpx envelope stress response modifies peptidoglycan cross-linking via the L,D-transpeptidase LdtD and the novel protein YgaU[J]. Journal of Bacteriology, 2015, 197(3):603-614.
    [78] Delhaye A, Collet JF, Laloux G. Fine-tuning of the Cpx envelope stress response is required for cell wall homeostasis in Escherichia coli[J]. mBio, 2016, 7(1):e0004716.
    [79] SANTOS JM, LOBO M, MATOS APA, de PEDRO MA, ARRAIANO CM. The gene bolA regulates dacA (PBP5), dacC (PBP6) and ampC (AmpC), promoting normal morphology in Escherichia coli[J]. Molecular Microbiology, 2002, 45(6):1729-1740.
    [80] FREIRE P, NEVES MOREIRA R, ARRAIANO CM. BolA inhibits cell elongation and regulates MreB expression levels[J]. Journal of Molecular Biology, 2009, 385(5):1345-1351.
    [81] BOUILLAUT L, NEWTON W, SONENSHEIN AL, BELITSKY BR. DdlR, an essential transcriptional regulator of peptidoglycan biosynthesis in Clostridioides difficile[J]. Molecular Microbiology, 2019, 112(5):1453-1470.
    [82] TAKENAKA T, ITO T, MIYAHARA I, HEMMI H, YOSHIMURA T. A new member of MocR/GabR-type PLP-binding regulator of D-alanyl-D-alanine ligase in Brevibacillus brevis[J]. The FEBS Journal, 2015, 282(21):4201-4217.
    [83] EGAN AJF, BIBOY J, van't VEER I, BREUKINK E, VOLLMER W. Activities and regulation of peptidoglycan synthases[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2015, 370(1679):20150031.
    [84] CAVENEY NA, EGAN AJF, AYALA I, LAGURI C, ROBB CS, BREUKINK E, VOLLMER W, STRYNADKA NCJ, SIMORRE JP. Structure of the peptidoglycan synthase activator LpoP in Pseudomonas aeruginosa[J]. Structure, 2020, 28(6):643-650.e5.
    [85] EGAN AJF, JEAN NL, KOUMOUTSI A, BOUGAULT CM, BIBOY J, SASSINE J, SOLOVYOVA AS, BREUKINK E, TYPAS A, VOLLMER W, SIMORRE JP. Outer-membrane lipoprotein LpoB spans the periplasm to stimulate the peptidoglycan synthase PBP1B[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(22):8197-8202.
    [86] JEAN NL, BOUGAULT CM, LODGE A, DEROUAUX A, CALLENS G, EGAN AJF, AYALA I, LEWIS RJ, VOLLMER W, SIMORRE JP. Elongated structure of the outer-membrane activator of peptidoglycan synthesis LpoA:Implications for PBP1A stimulation[J]. Structure, 2014, 22(7):1047-1054.
    [87] SARDIS MF, BOHRHUNTER JL, GREENE NG, BERNHARDT TG. The LpoA activator is required to stimulate the peptidoglycan polymerase activity of its cognate cell wall synthase PBP1a[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(35):e2108894118.
    [88] EGAN AJF, VOLLMER W. The physiology of bacterial cell division[J]. Annals of the New York Academy of Sciences, 2013, 1277:8-28.
    [89] ROHS PDA, BERNHARDT TG. Growth and division of the peptidoglycan matrix[J]. Annual Review of Microbiology, 2021, 75:315-336.
    [90] LECLERCQ S, DEROUAUX A, OLATUNJI S, FRAIPONT C, EGAN AJF, VOLLMER W, BREUKINK E, TERRAK M. Interplay between penicillin-binding proteins and SEDS proteins promotes bacterial cell wall synthesis[J]. Scientific Reports, 2017, 7:43306.
    [91] CONTRERAS-MARTEL C, MARTINS A, ECOBICHON C, TRINDADE DM, MATTEÏ PJ, HICHAM S, HARDOUIN P, GHACHI ME, BONECA IG, DESSEN A. Molecular architecture of the PBP2-MreC core bacterial cell wall synthesis complex[J]. Nature Communications, 2017, 8:776.
    [92] HUSSAIN S, WIVAGG CN, SZWEDZIAK P, WONG F, SCHAEFER K, IZORÉ T, RENNER LD, HOLMES MJ, SUN YJ, BISSON-FILHO AW, WALKER S, AMIR A, LÖWE J, GARNER EC. MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis[J]. eLife, 2018, 7:e32471.
    [93] TSENG CL, SHAW GC. Genetic evidence for the actin homolog gene mreBH and the bacitracin resistance gene bcrC as targets of the alternative sigma factor SigI of Bacillus subtilis[J]. Journal of Bacteriology, 2008, 190(5):1561-1567.
    [94] TSENG CL, CHEN JT, LIN JH, HUANG WZ, SHAW GC. Genetic evidence for involvement of the alternative sigma factor SigI in controlling expression of the cell wall hydrolase gene lytE and contribution of LytE to heat survival of Bacillus subtilis[J]. Archives of Microbiology, 2011, 193(9):677-685.
    [95] RAMANIUK O, PŘEVOROVSKÝ M, POSPÍŠIL J, VÍTOVSKÁ D, KOFROŇOVÁ O, BENADA O, SCHWARZ M, ŠANDEROVÁ H, HNILICOVÁ J, KRÁSNÝ L. σI from Bacillus subtilis:impact on gene expression and characterization of σI-dependent transcription that requires new types of promoters with extended -35 and -10 elements[J]. Journal of Bacteriology, 2018, 200(17):e00251-18.
    [96] HANSEN AM, QIU Y, YEH N, BLATTNER FR, DURFEE T, JIN DJ. SspA is required for acid resistance in stationary phase by downregulation of H-NS in Escherichia coli[J]. Molecular Microbiology, 2005, 56(3):719-734.
    [97] WANG FL, SHI J, HE DW, TONG B, ZHANG C, WEN AJ, ZHANG Y, FENG Y, LIN W. Structural basis for transcription inhibition by E. coli SspA[J]. Nucleic Acids Research, 2020, 48(17):9931-9942.
    [98] FUKUCHI K, KASAHARA Y, ASAI K, KOBAYASHI K, MORIYA S, OGASAWARA N. The essential two-component regulatory system encoded by yycF and yycG modulates expression of the ftsAZ operon in Bacillus subtilis[J]. Microbiology:Reading, 2000, 146 (Pt 7):1573-1583.
    [99] DUBRAC S, BISICCHIA P, DEVINE KM, MSADEK T. A matter of life and death:cell wall homeostasis and the WalKR (YycGF) essential signal transduction pathway[J]. Molecular Microbiology, 2008, 70(6):1307-1322.
    [100] HOWELL A, DUBRAC S, ANDERSEN KK, NOONE D, FERT J, MSADEK T, DEVINE K. Genes controlled by the essential YycG/YycF two-component system of Bacillus subtilis revealed through a novel hybrid regulator approach[J]. Molecular Microbiology, 2003, 49(6):1639-1655.
    [101] SHIN JH, CHOE D, RANSEGNOLA B, HONG HR, ONYEKWERE I, CROSS T, SHI QJ, CHO BK, WESTBLADE LF, BRITO IL, DÖRR T. A multifaceted cellular damage repair and prevention pathway promotes high-level tolerance to β-lactam antibiotics[J]. EMBO Reports, 2021, 22(2):e51790.
    [102] CHENG AT, OTTEMANN KM, YILDIZ FH. Vibrio cholerae response regulator VxrB controls colonization and regulates the type VI secretion system[J]. PLoS Pathogens, 2015, 11(5):e1004933.
    [103] TESCHLER JK, CHENG AT, YILDIZ FH. The two-component signal transduction system VxrAB positively regulates Vibrio cholerae biofilm formation[J]. Journal of Bacteriology, 2017, 199(18):e00139-17.
    [104] LI L, WANG QY, ZHANG H, YANG MJ, KHAN MI, ZHOU XH. Sensor histidine kinase is a β-lactam receptor and induces resistance to β-lactam antibiotics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(6):1648-1653.
    [105] SANTOS JM, FREIRE P, VICENTE M, ARRAIANO CM. The stationary-phase morphogene bolA from Escherichia coli is induced by stress during early stages of growth[J]. Molecular Microbiology, 1999, 32(4):789-798.
    [106] GUINOTE IB, MOREIRA RN, BARAHONA S, FREIRE P, VICENTE M, ARRAIANO CM. Breaking through the stress barrier:the role of BolA in Gram-negative survival[J]. World Journal of Microbiology and Biotechnology, 2014, 30(10):2559-2566.
    [107] 冯丽丽, 王智文. 形态工程在生物基化学品生产中的应用进展[J]. 生物工程学报, 2021, 37(7):2211-2222. FENG LL, WANG ZW. Development of morphology engineering for production of bio-based chemicals[J]. Chinese Journal of Biotechnology, 2021, 37(7):2211-2222 (in Chinese).
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

楼洁,胡晓,梁延群,朱怡铃,音建华. 肽聚糖的生物合成及其调控机制研究进展[J]. 微生物学报, 2023, 63(1): 106-123

复制
分享
文章指标
  • 点击次数:913
  • 下载次数: 2498
  • HTML阅读次数: 5712
  • 引用次数: 0
历史
  • 收稿日期:2022-05-09
  • 最后修改日期:2022-07-08
  • 在线发布日期: 2023-01-13
  • 出版日期: 2023-01-04
文章二维码