两株多环芳烃降解菌协同对菲-镉污染的去除特性
作者:
基金项目:

国家自然科学基金(52070138)


Synergistic removal of phenanthrene and cadmium by two polycyclic aromatic hydrocarbon-degrading bacteria
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】从污染土壤中分离筛选一株多环芳烃降解菌,并探究其与Pseudomonas aeruginosa B6-2构建的混菌体系对菲-镉复合污染的修复效能,以及微生物代谢特性对不同镉浓度赋存的响应特性,以期为复合污染的生物修复提供优良菌株资源及应用技术参考。【方法】采用富集驯化、筛选纯化方法得到一株多环芳烃降解菌,通过生理生化特征和16S rRNA基因序列分析进行鉴定。利用高效液相色谱法和电感耦合等离子体质谱法评估不同镉浓度赋存下各反应体系对菲和镉的去除效能;通过菌体细胞形态的扫描电镜观测及菌株代谢活性检测,探讨镉胁迫对菲生物降解过程的影响机制。【结果】筛选得到一株具有重金属耐受性和多环芳烃高效降解菌SZ-3,经鉴定为节杆菌属;降解菌协同体系(M)具有良好的菲降解效能和抗镉胁迫优势。镉胁迫浓度为0.5、10mg/L时,M对菲和镉的去除率分别高于85%、80%;镉胁迫浓度为25、50mg/L时,2种污染物的去除率均大于65%。扫描电镜分析表明,镉胁迫导致菌体表面粗糙且出现不同程度变形,菌体间黏附性和聚集性提高。反应周期内,邻苯二酚1,2-双加氧酶活性与电子传递体系活性随镉浓度增加而降低,两者变化与菲降解速率变化一致。【结论】Arthrobacter sp. SZ-3是一株PAHs高效降解菌,能与Pseudomonas aeruginosa B6-2协同高效修复菲-镉复合污染,随着初始镉胁迫浓度增加,混菌协同对目标污染物去除的优势显著。

    Abstract:

    [Objective] A polycyclic aromatic hydrocarbon (PAH)-degrading strain was isolated from the soil contaminated by PAHs. This strain was mixed with Pseudomonas aeruginosa B6-2 to construct a mixed bacterial system for remediation of the soil or liquid co-contaminated by phenanthrene and cadmium. We investigated the remediation efficiency and the response characteristics of microbial metabolism to Cd at different concentrations, aiming to provide bacterial resources and technology reference for the bioremediation of combined pollution. [Methods] The PAH-degrading strain was screened via enrichment, domestication, isolation, and purification and then identified by physio-biochemical tests and 16S rRNA gene sequence analysis. High performance liquid chromatography and inductively coupled plasma mass spectrometry were employed to evaluate the removal efficiency of phenanthrene and cadmium at different cadmium concentrations. Furthermore, the effects of cadmium stress on phenanthrene biodegradation were analyzed on the basis of cell morphology observed by scanning electron microscopy and metabolic activity. [Results] A novel strain SZ-3 with heavy metal tolerance and high PAH-degrading ability was screened out and identified as Arthrobacter. The mixed system (M) of the two degrading bacteria had high phenanthrene-degrading efficiency and resistance to cadmium stress. The removal rates of M for phenanthrene and cadmium were higher than 85% and 80%, respectively, at the cadmium concentrations of 0.5 mg/L and 10 mg/L. When the cadmium concentrations were 25 mg/L and 50 mg/L, M showed the removal rates higher than 65% for the two pollutants. Cadmium stress increased the surface roughness, led to different degrees of cell deformation, and strengthened the adhesion and aggregation between cells. Both catechol 1,2-dioxygenase activity and electron transport system activity decreased with the increase in cadmium concentration during the reaction cycle, which was consistent with the variation of phenanthrene degradation rate. [Conclusion] Arthrobacter sp. SZ-3 is a strain with high PAH-degrading efficiency, which, together with P. aeruginosa B6-2, can efficiently remediate the soil co-contaminated by phenanthrene and cadmium. The two strains demonstrated significant synergistic effect on the removal of target pollutants.

    参考文献
    [1] QIN YF, LIU YQ, WANG JB, LU Y, XU ZM. Emission of PAHs, PCBs, PBDEs and heavy metals in air, water and soil around a waste plastic recycling factory in an industrial park, Eastern China[J]. Chemosphere, 2022, 294:133734.
    [2] 王耀锋, 何连生, 姜登岭, 曹莹, 李强, 宫健. 我国焦化场地多环芳烃和重金属分布情况及生态风险评价[J]. 环境科学, 2021, 42(12):5938-5948. WANG YF, HE LS, JIANG DL, CAO Y, LI Q, GONG J. Distribution and ecological risk assessment of polycyclic aromatic hydrocarbons and heavy metals in coking sites in China[J]. Environmental Science, 2021, 42(12):5938-5948 (in Chinese).
    [3] PREMNATH N, MOHANRASU K, GURU RAJ RAO R, DINESH GH, PRAKASH GS, ANANTHI V, PONNUCHAMY K, MUTHUSAMY G, ARUN A. A crucial review on polycyclic aromatic Hydrocarbons-Environmental occurrence and strategies for microbial degradation[J]. Chemosphere, 2021, 280:130608.
    [4] YOUSEFI M, SHESHADI G, KHORSHIDIAN N, GHASEMZADEH-MOHAMMADI V, FAKHRI Y, HOSSEINI H, MOUSAVI KHANEGHAH A. Polycyclic aromatic hydrocarbons (PAHs) content of edible vegetable oils in Iran:a risk assessment study[J]. Food and Chemical Toxicology, 2018, 118:480-489.
    [5] CAO XF, CUI XW, XIE M, ZHAO R, XU L, NI SQ, CUI ZJ. Amendments and bioaugmentation enhanced phytoremediation and micro-ecology for PAHs and heavy metals co-contaminated soils[J]. Journal of Hazardous Materials, 2022, 426:128096.
    [6] LIU SH, ZENG GM, NIU QY, LIU Y, ZHOU L, JAING LH, TAN XF, XU P, ZHANG C, CHENG M. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi:a mini review[J]. Bioresource Technology, 2017, 224:25-33.
    [7] 曾军, 吴宇澄, 林先贵. 多环芳烃污染土壤微生物修复研究进展[J]. 微生物学报, 2020, 60(12):2804-2815. ZENG J, WU YC, LIN XG. Advances in microbial remediation of soils polluted by polycyclic aromatic hydrocarbons[J]. Acta Microbiologica Sinica, 2020, 60(12):2804-2815 (in Chinese).
    [8] WANAPAISAN P, LAOTHAMTEEP N, VEJARANO F, CHAKRABORTY J, SHINTANI M, MUANGCHINDA C, MORITA T, SUZUKI-MINAKUCHI C, INOUE K, NOJIRI H, PINYAKONG O. Synergistic degradation of pyrene by five culturable bacteria in a mangrove sediment-derived bacterial consortium[J]. Journal of Hazardous Materials, 2018, 342:561-570.
    [9] JIA XQ, HE Y, JIANG DW, LIU C, LU WY. Construction and analysis of an engineered Escherichia coli-Pseudomonas aeruginosa co-culture consortium for phenanthrene bioremoval[J]. Biochemical Engineering Journal, 2019, 148:214-223.
    [10] MARTINEZ I, MOHAMED MES, ROZAS D, GARCIA JL, DIAZ E. Engineering synthetic bacterial consortia for enhanced desulfurization and revalorization of oil sulfur compounds[J]. Metabolic Engineering, 2016, 35:46-54.
    [11] HUANG HY, WU KJ, KHAN A, JIANG YM, LING ZM, LIU P, CHEN Y, TAO XY, LI XK. A novel Pseudomonas gessardii strain LZ-E simultaneously degrades naphthalene and reduces hexavalent chromium[J]. Bioresource Technology, 2016, 207:370-378.
    [12] HONG JW, PARK JY, GADD GM. Pyrene degradation and copper and zinc uptake by Fusarium solani and Hypocrea lixii isolated from petrol station soil[J]. Journal of Applied Microbiology, 2010, 108(6):2030-2040.
    [13] LIU J, ZHANG AN, LIU YJ, LIU Z, LIU Y, WU XJ. Analysis of the mechanism for enhanced pyrene biodegradation based on the interactions between iron-ions and Rhodococcus ruber strain L9[J]. Ecotoxicology and Environmental Safety, 2021, 225:112789.
    [14] TIWARY M, DUBEY AK. Cypermethrin bioremediation in presence of heavy metals by a novel heavy metal tolerant strain, Bacillus sp. AKD1[J]. International Biodeterioration & Biodegradation, 2016, 108:42-47.
    [15] LIU SH, ZENG GM, NIU QY, GONG JL, HU XJ, LU LH, ZHOU YY, HU X, CHEN M, YAN M. Effect of Pb(ii) on phenanthrene degradation by new isolated Bacillus sp. P1[J]. RSC Advances, 2015, 5(69):55812-55818.
    [16] MA YN, ZHAO YY, WANG YF, LI XZ, SUN FF, CORVINI PFX, JI R. Effects of Cu2 + and humic acids on degradation and fate of TBBPA in pure culture of Pseudomonas sp. strain CDT[J]. Journal of Environmental Sciences, 2017, 62:60-67.
    [17] XIA X, WU SJ, ZHOU ZJ, WANG GJ. Microbial Cd(II) and Cr(VI) resistance mechanisms and application in bioremediation[J]. Journal of Hazardous Materials, 2021, 401:123685.
    [18] WANG WW, LI QG, ZHANG LG, CUI J, YU H, WANG XY, OUYANG XY, TAO F, XU P, TANG HZ. Genetic mapping of highly versatile and solvent-tolerant Pseudomonas putida B6-2 (ATCC BAA-2545) as a 'superstar' for mineralization of PAHs and dioxin-like compounds[J]. Environmental Microbiology, 2021, 23(8):4309-4325.
    [19] TANG HZ, YU H, LI QG, WANG XY, GAI ZH, YIN GB, SU F, TAO F, MA CQ, XU P. Genome sequence of Pseudomonas putida strain B6-2, a superdegrader of polycyclic aromatic hydrocarbons and dioxin-like compounds[J]. Journal of Bacteriology, 2011, 193(23):6789-6790.
    [20] BRAUNER A, FRIDMAN O, GEFEN O, BALABAN NQ. Distinguishing between resistance, tolerance and persistence to antibiotic treatment[J]. Nature Reviews Microbiology, 2016, 14(5):320-330.
    [21] CHEN XM, ZHAO Y, ZHAO XY, WU JQ, ZHU LJ, ZHANG X, WEI ZM, LIU Y, HE PP. Selective pressures of heavy metals on microbial community determine microbial functional roles during composting:Sensitive, resistant and actor[J]. Journal of Hazardous Materials, 2020, 398:122858.
    [22] 卫昆, 陈烁娜, 尹华, 叶锦韶, 彭辉, 刘则华. 蜡状芽胞杆菌对芘的降解特性及降解酶研究[J]. 环境科学学报, 2016, 36(2):506-512. WEI K, CHEN SN,YIN H, YE JS, PENG H, LIU ZH. The biodegradation characteristics of Pyrene Bacillus cereus and its enzyme[J]. Acta Scientiae Circumstantiae, 2016, 36(2):506-512 (in Chinese).
    [23] 曾光明, 刘少恒, 牛秋雅, 刘云国, 胡新将. Cd(Ⅱ)对多环芳烃降解菌Bacillus sp. P1产酶及酶促降解过程影响研究[J]. 湖南大学学报(自然科学版), 2014, 41(12):109-114. ZENG GM, LIU SH, NIU QY, LIU YG, HU XJ. Effects of Cd(Ⅱ) on enzyme productions of PAHs-biodegrading Bacillus sp. P1 and the characteristics of enzymatic degradation[J]. Journal of Hunan University:Natural Sciences, 2014, 41(12):109-114 (in Chinese SAHU S, RA届兂ON豓孈光 M乐匬琠GU畊RE 乎, GU畐孔佁造位籋洬怠術彈酅酌屋孅氠汒浇怬瘠彇呈OSE A猬堠祒孁NGAN L, PAKSHIRAJAN K, MITRA S. Bacterial strains found in the soils of a municipal solid waste dumping site facilitated phosphate solubilization along with cadmium remediation[J]. Chemosphere, 2022, 287:132320.
    [42] BRUINS MR, KAPIL S, OEHME FW. Microbial resistance to metals in the environment[J]. Ecotoxicology and Environmental Safety, 2000, 45(3):198-207.
    [43] MEJIAS CARPIO IE, ANSARI A, RODRIGUES DF. Relationship of biodiversity with heavy metal tolerance and sorption capacity:a meta-analysis approach[J]. Environmental Science & Technology, 2018, 52(1):184-194.
    [44] LI CH, YE C, WONG YS, TAM NFY. Effect of Mn(IV) on the biodegradation of polycyclic aromatic hydrocarbons under low-oxygen condition in mangrove sediment slurry[J]. Journal of Hazardous Materials, 2011, 190(1/2/3):786-793.cterial diversity in soils contaminated long-term with PAHs and heavy metals:implications to bioremediation[J]. Journal of Hazardous Materials, 2016, 317:169-179.
    [28] WANG JL, CHEN C. Biosorbents for heavy metals removal and their future[J]. Biotechnology Advances, 2009, 27(2):195-226.
    [29] LI ZH, LIU JL, QIAO MH, FAN KN. A theoretical study on the metal cation-π complexes of Zn2+ and Cd2+ with benzene and cyclohexene[J]. Molecular Physics, 2009, 107(8/9/10/11/12):1271-1282.
    [30] LEMIRE JA, HARRISON JJ, TURNER RJ. Antimicrobial activity of metals:mechanisms, molecular targets and applications[J]. Nature Reviews Microbiology, 2013, 11(6):371-384.
    [31] HARITASH AK, KAUSHIK CP. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs):a review[J]. Journal of Hazardous Materials, 2009, 169(1/2/3):1-15.
    [32] 陈皓, 陈玲, 赵建夫, 黄爱群. 重金属对厌氧污泥电子传递体系活性影响研究[J]. 环境科学, 2007, 28(4):4786-4790. CHEN H, CHEN L, ZHAO JF, HUANG AQ. Effects of heavy metallic ions on electron transport system activity of anaerobic sludge[J]. Environmental Science, 2007, 28(4):4786-4790 (in Chinese).
    [33] XU SZ, XING YH, LIU S, HAO XL, CHEN WL, HUANG QY. Characterization of Cd2+ biosorption by Pseudomonas sp. strain 375, a novel biosorbent isolated from soil polluted with heavy metals in Southern China[J]. Chemosphere, 2020, 240:124893.
    [34] 解琳, 郝宇, 齐欣, 刘本松, 温昱晨, 刘丽杰, 杨晓杰, 金忠民. 一株耐铅镉真菌的分离鉴定及其吸附特性的研究[J]. 微生物学报, 2020, 60(4):780-788. XIE L, HAO Y, QI X, LIU BS, WEN YC, LIU LJ, YANG XJ, JIN ZM. Isolation, identification and biosorption characteristics of a lead and cadmium resistant fungus[J]. Acta Microbiologica Sinica, 2020, 60(4):780-788 (in Chinese).
    [35] KONG WT, MELDGIN DR, COLLINS JJ, LU T. Designing microbial consortia with defined social interactions[J]. Nature Chemical Biology, 2018, 14(8):821-829.
    [36] WEN ZQ, LEDESMA-AMARO R, LU MR, JIANG Y, GAO SL, JIN MJ, YANG S. Combined evolutionary engineering and genetic manipulation improve low pH tolerance and butanol production in a synthetic microbial Clostridium community[J]. Biotechnology and Bioengineering, 2020, 117(7):2008-2022.
    [37] 李恒昌, 丁明珠. 石油烃生物降解过程的研究进展[J]. 生物工程学报, 2021, 37(8):2765-2778. LI HC, DING MZ. Advances in biodegradation of petroleum hydrocarbons[J]. Chinese Journal of Biotechnology, 2021, 37(8):2765-2778 (in Chinese).
    [38] LIU Y, DING MZ, LING W, YANG Y, ZHOU X, LI BZ, CHEN T, NIE Y, WANG MX, ZENG BX, LI X, LIU H, SUN BD, XU HM, ZHANG JM, JIAO Y, HOU YN, YANG H, XIAO SJ, LIN QC, et al. A three-species microbial consortium for power generation[J]. Energy & Environmental Science, 2017, 10(7):1600-1609.
    [39] SHI GY, YIN H, YE JS, PENG H, LI J, LUO CL. Effect of cadmium ion on biodegradation of decabromodiphenyl ether (BDE-209) by Pseudomonas aeruginosa[J]. Journal of Hazardous Materials, 2013, 263:711-717.
    [40] 李卓阳, 曹苗苗, 周登博, 王尉, 戚春林, 谢江辉. 高耐镉细菌Burkholderia sp. DF3-1对镉的吸附特性及机理[J]. 热带作物学报, 2022, 43(3):589-596. LI ZY, CAO MM, ZHOU DB, WANG W, QI CL, XIE JH. Adsorption characteristics and mechanism of high cadmium-tolerant bacteria Burkholderia sp. DF3-1 to cadmium[J]. Chinese Journal of Tropical Crops, 2022, 43(3):589-596 (in Chinese).
    [41]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

许晓毅,崔佳豪,白净,王斌,陈小宾,贺志敏,温妍. 两株多环芳烃降解菌协同对菲-镉污染的去除特性[J]. 微生物学报, 2023, 63(1): 283-296

复制
分享
文章指标
  • 点击次数:290
  • 下载次数: 934
  • HTML阅读次数: 716
  • 引用次数: 0
历史
  • 收稿日期:2022-04-26
  • 最后修改日期:2022-07-20
  • 在线发布日期: 2023-01-13
  • 出版日期: 2023-01-04
文章二维码