戈登氏菌属放线菌的研究进展
作者:
基金项目:

广东省公益研究与能力建设项目(2017A020211008);广东省普通高校基础研究与应用基础项目(2018KZDXM041);广东省自然科学基金(2020A1515011097);广州市科技计划(202201010357)


Recent advances on Gordonia
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [76]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    戈登氏菌属(Gordonia)放线菌是一类棒状稀有放线菌。自Tsukamura于1971年首次发现以来,目前共分离纯化获得41个有效种。这些菌株广泛分布于红树林根际、油井、碳氢化合物污染的土壤、废水和患病的人类中。戈登氏菌的生物转化功能、生物降解功能和活性物质合成能力,使这些细菌在新药开发、环境修复方面具有潜在的用途。本文对戈登氏菌属放线菌的建立、分类学特征、生物活性物质、生物降解功能等进行了系统综述,以期为推进戈登氏菌属资源的高质量开发奠定基础。

    Abstract:

    The rare rod-shaped Gordonia was discovered by Tsukamura in 1971. A total of 41 valid species have been isolated and purified, which are widely distributed in mangrove rhizosphere, oil wells, hydrocarbon-contaminated soil, wastewater, and diseased humans. Owing to the functions of biotransformation, biodegradation, and active substance synthesis, Gordonia has great potential for drug development and environmental remediation. This study reviews the establishment, taxonomic characteristics, bioactive substances, and biodegradation function of Gordonia, which is expected to lay a foundation for the high-quality development of the resources of Gordonia.

    参考文献
    [1] TSUKAMURA M. Proposal of a new genus, Gordona, for slightly acid-fast organisms occurring in sputa of patients with pulmonary disease and in soil[J]. Journal of General Microbiology, 1971, 68(1):15-26.
    [2] STACKEBRANDT E, RAINEY FA, WARD-RAINEY NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov[J]. International Journal of Systematic Bacteriology, 1997, 47(2):479-491.
    [3] SOWANI H, KULKARNI M, ZINJARDE S. An insight into the ecology, diversity and adaptations of Gordonia species[J]. Critical Reviews in Microbiology, 2018, 44(4):393-413.
    [4] CHOI R, STRNAD L, FLAXEL CJ, LAUER AK, SUHLER EB. Gordonia bronchialis-associated endophthalmitis, Oregon, USA[J]. Emerging Infectious Diseases, 2019, 25(5):1017-1019.
    [5] ARENSKÖTTER M, BRÖKER D, STEINBÜCHEL A. Biology of the metabolically diverse genus Gordonia[J]. Applied and Environmental Microbiology, 2004, 70(6):3195-3204.
    [6] TAMURA T, SAITO S, HAMADA M, KANG YQ, HOSHINO Y, GONOI T, MIKAMI Y, YAGUCHI T. Gordonia crocea sp. nov. and Gordonia spumicola sp. nov. isolated from sludge of a wastewater treatment plant[J]. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(6):3718-3723.
    [7] TSANG CC, XIONG LF, POON RWS, CHEN JHK, LEUNG KW, LAM JYW, WU AKL, CHAN JFW, LAU SKP, WOO PCY. Gordonia hongkongensis sp. nov., isolated from blood culture and peritoneal dialysis effluent of patients in Hong Kong[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(10):3942-3950.
    [8] ANDALIBI F, FATAHI-BAFGHI M. Gordonia:isolation and identification in clinical samples and role in biotechnology[J]. Folia Microbiologica, 2017, 62(3):245-252.
    [9] FRANCZUK M, KLATT M, FILIPCZAK D, ZABOST A, PARNIEWSKI P, KUTHAN R, JAKUBOWSKA L, AUGUSTYNOWICZ-KOPEĆ E. From NTM (Nontuberculous mycobacterium) to Gordonia bronchialis-a diagnostic challenge in the COPD patient[J]. Diagnostics (Basel, Switzerland), 2022, 12(2):307.
    [10] DING XR, YU YH, CHEN M, WANG C, KANG YF, LI HM, LOU JL. Bacteremia due to Gordonia polyisoprenivorans:case report and review of literature[J]. BMC Infectious Diseases, 2017, 17(1):419.
    [11] GUIRAUD J, LESCURE M, FAGANELLO D, BÉBÉAR C, PEREYRE S, MÉNARD A. A case of prosthetic joint septic arthritis caused by Gordonia jacobaea[J]. Journal of Microbiology, Immunology, and Infection=Wei Mian Yu Gan Ran Za Zhi, 2022, 55(2):355-357.
    [12] CHOI ME, JUNG CJ, WON CH, CHANG SE, LEE MW, CHOI JH, LEE WJ. Case report of cutaneous nodule caused by Gordonia bronchialis in an immunocompetent patient after receiving acupuncture[J]. The Journal of Dermatology, 2019, 46(4):343-346.
    [13] SHIN KC, LEE HJ, OH DK. Substrate specificity of β-glucosidase from Gordonia terrae for ginsenosides and its application in the production of ginsenosides Rg3, Rg2, and Rh1 from ginseng root extract[J]. Journal of Bioscience and Bioengineering, 2015, 119(5):497-504.
    [14] KASHYAP R, Monika, SUBUDHI E. A novel thermoalkaliphilic xylanase from Gordonia sp. is salt, solvent and surfactant tolerant[J]. Journal of Basic Microbiology, 2014, 54(12):1342-1349.
    [15] SCHULTE C, ARENSKÖTTER M, BEREKAA MM, ARENSKÖTTER Q, PRIEFERT H, STEINBÜCHEL A. Possible involvement of an extracellular superoxide dismutase (SodA) as a radical scavenger in poly(cis-1, 4-isoprene) degradation[J]. Applied and Environmental Microbiology, 2008, 74(24):7643-7653.
    [16] GOGOLEVA OA, NEMTSEVA NV, BUKHARIN OV. Catalase activity of hydrocarbon-oxidizing bacteria[J]. Prikladnaia Biokhimiia i Mikrobiologiia, 2012, 48(6):612-617.
    [17] BHALLA TC, Prashant, KUMARI N, KUMAR V, KUMAR V, Savitri. Synthesis of vanillic acid using whole cell nitrilase of wild and mutant Gordonia terrae[J]. Bioprocess and Biosystems Engineering, 2016, 39(1):67-73.
    [18] KUMAR V, BHALLA TC. Transformation of p-hydroxybenzonitrile to p-hydroxybenzoic acid using nitrilase activity of Gordonia terrae[J]. Biocatalysis and Biotransformation, 2013, 31(1):42-48.
    [19] LAORRATTANASAK S, RONGSAYAMANONT W, KHONDEE N, PAORACH N, SOONGLERDSONGPHA S, PINYAKONG O, LUEPROMCHAI E. Production and application of Gordonia westfalica GY40 biosurfactant for remediation of fuel oil spill[J]. Water, Air, & Soil Pollution, 2016, 227(9):325.
    [20] KONDO T, YAMAMOTO D, YOKOTA A, SUZUKI A, NAGASAWA H, SAKUDA S. Gordonan, an acidic polysaccharide with cell aggregation-inducing activity in insect BM-N4 cells, produced by Gordonia sp.[J]. Bioscience, Biotechnology, and Biochemistry, 2000, 64(11):2388-2394.
    [21] LIN TC, CHANG JS, YOUNG CC. Exopolysaccharides produced by Gordonia alkanivorans enhance bacterial degradation activity for diesel[J]. Biotechnology Letters, 2008, 30(7):1201-1206.
    [22] ZARGAR AN, MISHRA S, KUMAR M, SRIVASTAVA P. Isolation and chemical characterization of the biosurfactant produced by Gordonia sp. IITR100[J]. PLoS One, 2022, 17(4):e0264202.
    [23] SCHNEIDER K, GRAF E, IRRAN E, NICHOLSON G, STAINSBY FM, GOODFELLOW M, BORDEN SA, KELLER S, SÜSSMUTH RD, FIEDLER HP. Bendigoles A~C, new steroids from Gordonia australis acta 2299[J]. The Journal of Antibiotics, 2008, 61(6):356-364.
    [24] LIN ZJ, MARETT L, HUGHEN RW, FLORES M, FORTEZA I, AMMON MA, CONCEPCION GP, ESPINO S, OLIVERA BM, ROSENBERG G, HAYGOOD MG, LIGHT AR, SCHMIDT EW. Neuroactive diol and acyloin metabolites from cone snail-associated bacteria[J]. Bioorganic & Medicinal Chemistry Letters, 2013, 23(17):4867-4869.
    [25] GRAÇA AP, BONDOSO J, GASPAR H, XAVIER JR, MONTEIRO MC, de la CRUZ M, OVES-COSTALES D, VICENTE F, LAGE OM. Antimicrobial activity of heterotrophic bacterial communities from the marine sponge Erylus discophorus (Astrophorida, Geodiidae)[J]. PLoS One, 2013, 8(11):e78992.
    [26] ELFALAH HWA, AHMAD A, USUP G. Anti-microbial properties of secondary metabolites of marine Gordonia tearrae extract[J]. Journal of Agricultural Science, 2013, 5(6):94-101.
    [27] CLAVERÍAS FP, UNDABARRENA A, GONZÁLEZ M, SEEGER M, CÁMARA B. Culturable diversity and antimicrobial activity of Actinobacteria from marine sediments in Valparaíso Bay, Chile[J]. Frontiers in Microbiology, 2015, 6:737.
    [28] SHAMIKH YI, EL SHAMY AA, GABER Y, ABDELMOHSEN UR, MADKOUR HA, HORN H, HASSAN HM, ELMAIDOMY AH, ALKHALIFAH DHM, HOZZEIN WN. Actinomycetes from the red sea sponge Coscinoderma mathewsi:isolation, diversity, and potential for bioactive compounds discovery[J]. Microorganisms, 2020, 8(5):783.
    [29] PARK HB, PARK JS, LEE SI, SHIN B, OH DC, KWON HC. Gordonic acid, a polyketide glycoside derived from bacterial coculture of Streptomyces and Gordonia species[J]. Journal of Natural Products, 2017, 80(9):2542-2546.
    [30] 王影姣. 美洲大蠊肠道内生放线菌的多样性研究[D]. 广州:广东药科大学硕士学位论文, 2016. WANG YJ. The diversity research of Periplaneta americana intestinal endogenous Actinomyces[D]. Guangzhou:Master's Thesis of Guangdong Pharmaceutical University, 2016(in Chinese)
    [31] 曾还雄. 两株蜚蠊肠道内生放线菌次级代谢产物的初步研究[D]. 广州:广东药科大学硕士学位论文, 2019. ZENG HX. Preliminary study on secondary metabolites of two cockroach gut endophytic actinomycetes[D]. Guangzhou:Master's Thesis of Guangdong Pharmaceutical University, 2019(in Chinese)
    [32] MA Y, XU MH, LIU HC, YU TT, GUO P, LIU WB, JIN XB. Antimicrobial compounds were isolated from the secondary metabolites of Gordonia, a resident of intestinal tract of Periplaneta americana[J]. AMB Express, 2021, 11(1):111.
    [33] 刘凌燕. 美洲大蠊肠道内生戈登氏放线菌WA8-44次级代谢产物抗真菌活性的初步研究[D]. 广州:广东药科大学硕士学位论文, 2019. LIU LY. Preliminary study on the antifungal activity of the secondary metabolites of Gordonia WA8-44 from the intestinal tract of Periplaneta americana[D]. Guangzhou:Master's Thesis of Guangdong Pharmaceutical University, 2019(in Chinese)
    [34] de MIGUEL T, SIEIRO C, POZA M, VILLA TG. Analysis of canthaxanthin and related pigments from Gordonia jacobaea mutants[J]. Journal of Agricultural and Food Chemistry, 2001, 49(3):1200-1202.
    [35] KWON SJ, CHOI YJ, KIM JM, LEE PC. Complete genome sequence of the carotenoid-producing strain Gordonia ajoucoccus A2[J]. Microbiology Resource Announcements, 2020, 9(37):e00662-20.
    [36] SILVA TP, ALVES L, PAIXÃO SM. Effect of dibenzothiophene and its alkylated derivatives on coupled desulfurization and carotenoid production by Gordonia alkanivorans strain 1B[J]. Journal of Environmental Management, 2020, 270:110825.
    [37] LOH WLC, HUANG KC, NG HS, LAN JCW. Exploring the fermentation characteristics of a newly isolated marine bacteria strain, Gordonia terrae TWRH01 for carotenoids production[J]. Journal of Bioscience and Bioengineering, 2020, 130(2):187-194.
    [38] TAKAICHI S, MAOKA T, AKIMOTO N, CARMONA ML, YAMAOKA Y. Carotenoids in a corynebacterineae, Gordonia terrae AIST-1:carotenoid glucosyl mycoloyl esters[J]. Bioscience, Biotechnology, and Biochemistry, 2008, 72(10):2615-2622.
    [39] KIM JH, KIM SH, YOON JH, LEE PC. Carotenoid production from n-alkanes with a broad range of chain lengths by the novel species Gordonia ajoucoccus A2T[J]. Applied Microbiology and Biotechnology, 2014, 98(8):3759-3768.
    [40] CASSARINI M, BESAURY L, REMOND C. Valorisation of wheat bran to produce natural pigments using selected microorganisms[J]. Journal of Biotechnology, 2021, 339:81-92.
    [41] SOWANI H, MOHITE P, DAMALE S, KULKARN M, ZINJARDE S. Carotenoid stabilized gold and silver nanoparticles derived from the Actinomycete Gordonia amicalis HS-11 as effective free radical scavengers[J]. Enzyme and Microbial Technology, 2016, 95:164-173.
    [42] KALITA M, CHUTIA M, JHA DK, SUBRAHMANYAM G. Mechanistic understanding of Gordonia sp. in biodesulfurization of organosulfur compounds[J]. Current Microbiology, 2022, 79(3):82.
    [43] AKHTAR N, AKHTAR K, GHAURI MA. Biodesulfurization of Thiophenic Compounds by a 2-hydroxybiphenyl-resistant Gordonia sp. HS126-4N Carrying dszABC Genes[J]. Current Microbiology, 2018, 75(5):597-603.
    [44] ADLAKHA J, SINGH P, RAM SK, KUMAR M, SINGH MP, SINGH D, SAHAI V, SRIVASTAVA P. Optimization of conditions for deep desulfurization of heavy crude oil and hydrodesulfurized diesel by Gordonia sp. IITR100[J]. Fuel, 2016, 184:761-769.
    [45] MURARKA P, SRIVASTAVA P. Characterization of DNA binding and ligand binding properties of the TetR family protein involved in regulation of dsz operon in Gordonia sp. IITR100[J]. International Journal of Biological Macromolecules, 2019, 141:671-679.
    [46] CHATTERJEE S, DUTTA T. Metabolism of butyl benzyl phthalate by Gordonia sp. strain MTCC 4818[J]. Biochemical and Biophysical Research Communications, 2003, 309(1):36-43.
    [47] WU XL, LIANG RX, DAI QY, JIN DC, WANG YY, CHAO WL. Complete degradation of di-n-octyl phthalate by biochemical cooperation between Gordonia sp. strain JDC-2 and Arthrobacter sp. strain JDC-32 isolated from activated sludge[J]. Journal of Hazardous Materials, 2010, 176(1/2/3):262-268.
    [48] ZHANG HY, LIN Z, LIU B, WANG G, WENG LY, ZHOU JL, HU HQ, HE H, HUANG YX, CHEN JJ, RUTH N, LI CY, REN L. Bioremediation of di-(2-ethylhexyl) phthalate contaminated red soil by Gordonia terrae RL-JC02:characterization, metabolic pathway and kinetics[J]. The Science of the Total Environment, 2020, 733:139138.
    [49] WU XL, WANG YY, DAI QY, LIANG RX, JIN DC. Isolation and characterization of four di-n-butyl phthalate (DBP)-degrading Gordonia sp. strains and cloning the 3, 4-phthalate dioxygenase gene[J]. World Journal of Microbiology and Biotechnology, 2011, 27(11):2611-2617.
    [50] HE ZX, XIAO HL, TANG L, MIN H, LU ZM. Biodegradation of di-n-butyl phthalate by a stable bacterial consortium, HD-1, enriched from activated sludge[J]. Bioresource Technology, 2013, 128:526-532.
    [51] ALESSANDRELLO MJ, JUÁREZ TOMÁS MS, RAIMONDO EE, VULLO DL, FERRERO MA. Petroleum oil removal by immobilized bacterial cells on polyurethane foam under different temperature conditions[J]. Marine Pollution Bulletin, 2017, 122(1/2):156-160.
    [52] LIU PW G, LIOU JW, SU WL, CHEN CH. The optimal combination of entrapped bacteria for diesel remediation in seawater[J]. International Biodeterioration & Biodegradation, 2015, 102:383-391.
    [53] PODGORSKII VS, NOGINA TN, DUMANSKAYA TM, OSTAPCHUK AN. Change of the composition parafinnaphthenic hydrocarbon fraction in biological purification of water of oil[J]. Journal of Water Chemistry and Technology, 2015, 37(6):306-310.
    [54] FRANZETTI A, BESTETTI G, CAREDDA P, la COLLA P, TAMBURINI E. Surface-active compounds and their role in the access to hydrocarbons in Gordonia strains[J]. FEMS Microbiology Ecology, 2008, 63(2):238-248.
    [55] KOTANI T, YURIMOTO H, KATO N, SAKAI Y. Novel acetone metabolism in a propane-utilizing bacterium, Gordonia sp. strain TY-5[J]. Journal of Bacteriology, 2007, 189(3):886-893.
    [56] LO PICCOLO L, de PASQUALE C, FODALE R, PUGLIA AM, QUATRINI P. Involvement of an alkane hydroxylase system of Gordonia sp. strain SoCg in degradation of solid n-alkanes[J]. Applied and Environmental Microbiology, 2011, 77(4):1204-1213.
    [57] LIN CL, SHEN FT, TAN CC, HUANG CC, CHEN BY, ARUN AB, YOUNG CC. Characterization of Gordonia sp. strain CC-NAPH129-6 capable of naphthalene degradation[J]. Microbiological Research, 2012, 167(7):395-404.
    [58] KASAI D. Poly(cis-1,4-isoprene)-cleavage enzymes from natural rubber-utilizing bacteria[J]. Bioscience, Biotechnology, and Biochemistry, 2020, 84(6):1089-1097.
    [59] SARKAR B, MANDAL S. Gordonia sp. BSTG01 isolated from Hevea brasiliensis plantation efficiently degrades polyisoprene (rubber)[J]. 3 Biotech, 2021, 11(12):508.
    [60] BRÖKER D, ARENSKÖTTER M, LEGATZKI A, NIES DH, STEINBÜCHEL A. Characterization of the 101-kilobase-pair megaplasmid pKB1, isolated from the rubber-degrading bacterium Gordonia westfalica Kb1[J]. Journal of Bacteriology, 2004, 186(1):212-225.
    [61] VIVOD R, OETERMANN S, HIESSL S, GUTSCHE S, REMMERS N, MEINERT C, VOIGT B, RIEDEL K, STEINBÜCHEL A. Oligo(cis-1, 4-isoprene) aldehyde-oxidizing dehydrogenases of the rubber-degrading bacterium Gordonia polyisoprenivorans VH2[J]. Applied Microbiology and Biotechnology, 2017, 101(21):7945-7960.
    [62] IBRAHIM EMA, EL-AMEEN TM. Degradation of natural and synthetic rubber by gordonia alkanivorans strain e1[J]. Journal of Agricultural Chemistry and Biotechnology, 2013, 4(1):17-28.
    [63] BRAGA SP, dos SANTOS AP, PAGANINI T, BARBOSA D, EPAMINO GWC, MORAIS C, MARTINS LF, SILVA AM, SETUBAL JC, VALLIM MA, PASCON RC. First report of cis-1,4-polyisoprene degradation by Gordonia paraffinivorans[J]. Brazilian Journal of Microbiology, 2019, 50(4):1051-1062.
    [64] ALTENHOFF AL, THIERBACH S, STEINBÜCHEL A. In vitro studies on the degradation of common rubber waste material with the latex clearing protein (Lcp1VH2) of Gordonia polyisoprenivorans VH2[J]. Biodegradation, 2021, 32(2):113-125.
    [65] de WITT J, OETERMANN S, PARISE M, PARISE D, BAUMBACH J, STEINBÜCHEL A. Global regulator of rubber degradation in Gordonia polyisoprenivorans VH2:identification and involvement in the regulation network[J]. Applied and Environmental Microbiology, 2020, 86(15):e00774-e00720.
    [66] ALTENHOFF AL, THIERBACH S, STEINBUCHEL A. High yield production of the latex clearing protein from Gordonia polyisoprenivorans VH2 in fed batch fermentations using a recombinant strain of Escherichia coli[J]. Journal of Biotechnology, 2020, 309:92-99.
    [67] GRILL B, HORVAT M, SCHWAB H, GROSS R, DONSBACH K, WINKLER M. Gordonia hydrophobica nitrile hydratase for amide preparation from nitriles[J]. Catalysts, 2021, 11(11):1287.
    [68] 徐红梅, 何从林, 夏仕文. 腈水合酶/酰胺酶体系制备蛋氨酸羟基类似物[J]. 精细化工, 2017, 34(7):780-785. XU HM, HE CL, XIA SW. Preparation of methionine hydroxy analogue by nitrile hydratase/amidase system[J]. Fine Chemicals, 2017, 34(7):780-785(in Chinese).
    [69] BRANDÃO PFB, CLAPP JP, BULL AT. Discrimination and taxonomy of geographically diverse strains of nitrile-metabolizing actinomycetes using chemometric and molecular sequencing techniques[J]. Environmental Microbiology, 2002, 4(5):262-276.
    [70] THOMPSON KT, CROCKER FH, FREDRICKSON HL. Mineralization of the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia and Williamsia spp[J]. Applied and Environmental Microbiology, 2005, 71(12):8265-8272.
    [71] INDEST KJ, JUNG CM, CHEN HP, HANCOCK D, FLORIZONE C, ELTIS LD, CROCKER FH. Functional characterization of pGKT2, a 182-kilobase plasmid containing the xplAB genes, which are involved in the degradation of hexahydro-1,3,5- trinitro-1,3,5-triazine by Gordonia sp. strain KTR9[J]. Applied and Environmental Microbiology, 2010, 76(19):6329-6337.
    [72] CHONG CS, SABIR DK, LORENZ A, BONTEMPS C, ANDEER P, STAHL DA, STRAND SE, RYLOTT EL, BRUCE NC. Analysis of the xplAB-containing gene cluster involved in the bacterial degradation of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine[J]. Applied and Environmental Microbiology, 2014, 80(21):6601-6610.
    [73] JUNG CM, CARR M, BLAKENEY GA, INDEST KJ. Enhanced plasmid-mediated bioaugmentation of RDX-contaminated matrices in column studies using donor strain Gordonia sp. KTR9[J]. Journal of Industrial Microbiology & Biotechnology, 2019, 46(9/10):1273-1281.
    [74] FULLER ME, HATZINGER PB, CONDEE CW, ANDAYA C, REZES R, MICHALSEN MM, CROCKER FH, INDEST KJ, JUNG CM, BLAKENEY GA, ISTOK JD, HAMMETT SA. RDX degradation in bioaugmented model aquifer columns under aerobic and low oxygen conditions[J]. Applied Microbiology and Biotechnology, 2017, 101(13):5557-5567.
    [75] MICHALSEN MM, KING AS, RULE RA, FULLER ME, HATZINGER PB, CONDEE CW, CROCKER FH, INDEST KJ, JUNG CM, ISTOK JD. Evaluation of biostimulation and bioaugmentation to stimulate hexahydro-1,3,5-trinitro-1,3,5-triazine degradation in an aerobic groundwater aquifer[J]. Environmental Science & Technology, 2016, 50(14):7625-7632.
    [76] MICHALSEN MM, KING AS, ISTOK JD, CROCKER FH, FULLER ME, KUCHARZYK KH, GANDER MJ. Spatially-distinct redox conditions and degradation rates following field-scale bioaugmentation for RDX-contaminated groundwater remediation[J]. Journal of Hazardous Materials, 2020, 387:121529.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

汪洁,黎尔彤,田方圆,金小宝,刘文彬. 戈登氏菌属放线菌的研究进展[J]. 微生物学报, 2023, 63(2): 494-508

复制
分享
文章指标
  • 点击次数:903
  • 下载次数: 1185
  • HTML阅读次数: 1593
  • 引用次数: 0
历史
  • 收稿日期:2022-06-04
  • 录用日期:2022-08-15
  • 在线发布日期: 2023-02-21
  • 出版日期: 2023-02-04
文章二维码