电活性微生物胞外聚合物的特征与应用
作者:
基金项目:

国家自然科学基金(41877052);广东省珠江人才计划引进创新创业团队项目(2019ZT08L213)


Characteristics and applications of extracellular polymeric substances of electroactive microorganisms
Author:
  • XIE Shuyi

    XIE Shuyi

    Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, Guangdong, China;Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Shanshan

    CHEN Shanshan

    Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, Guangdong, China;Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LUAN Tiangang

    LUAN Tiangang

    Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, Guangdong, China;Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [71]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    电活性微生物是一类能够通过直接接触、导电菌毛或氧化还原介质与电极或者其他细胞进行胞外电子传递的微生物。而在这个过程中,胞外聚合物(extracellular polymeric substances, EPS)扮演着重要的角色。EPS是微生物生长过程中通过细胞裂解、水解分泌的高分子聚合物的混合物,主要由蛋白质、多糖和腐殖质等物质组成。来自电活性微生物的EPS的不同组成成分和特性会对EPS的电活性以及电活性微生物胞外电子传递产生一定的影响,同时在环境应用方面发挥重要作用。因此,为了更全面了解电活性微生物EPS的电活性及其对电活性微生物胞外电子传递的作用,本文总体介绍了电活性微生物EPS的电活性的直接表征方法,再从组成成分、化学性质、物理性质和空间分布4个方面综述了其对EPS电活性的影响及其在电子传递中的作用,介绍了当前电活性微生物EPS在染料废水脱色、重金属吸附、有机污染物的生物转化和渗滤液管理等方面的环境应用,并从表征方法、试验规模和互作机理研究等角度展望了未来的研究方向。

    Abstract:

    Electroactive microorganisms can exchange electrons in their extracellular environment with electrodes or other cells through direct contact, conductive pilli, or redox mediators, in which extracellular polymeric substances (EPS) play a crucial part. EPS are a mixture of cell secretions, cell lysates, and other substances attached on the surface of microbial cells to protect them from external environment, comprising proteins, polysaccharides, humics, among others. Thus, the composition and characteristics of EPS from electroactive microorganisms influence the electroactive properties of the EPS and the extracellular electron transfer of the microorganisms, allowing them to be applied in the environmental bioremediations. For a clear understanding of the electroactive properties of EPS from electroactive microorganisms and the influence on extracellular electron transfer of the microorganisms, we introduced the methods for characterizing the electroactive properties of the EPS and summarized the influence of the composition, chemical properties, physical properties, and spatial distribution of the substances on their electroactive properties. In addition, we descried the applications of the EPS in decolorization of dye wastewater, adsorption of heavy metals, biotransformation of organic pollutants, leachate management, etc. Finally, the future research directions in the characterization method, the scale of experiments, and the interaction mechanisms were summed up.

    参考文献
    [1] THAPA BS, KIM T, PANDIT S, SONG YE, AFSHARIAN YP, RAHIMNEJAD M, KIM JR, OH SE. Overview of electroactive microorganisms and electron transfer mechanisms in microbial electrochemistry[J]. Bioresource Technology, 2022, 347:126579.
    [2] PAQUETE CM, ROSENBAUM MA, BAÑERAS L, ROTARU AE, PUIG S. Let's chat:communication between electroactive microorganisms[J]. Bioresource Technology, 2022, 347:126705.
    [3] 林霄涵, 杨帆, 赵峰. 微生物的胞外电子传递界面[J]. 环境化学, 2021, 40(11):3283-3296. LIN XH, YANG F, ZHAO F. The interface of microbial extracellular electron transfer[J]. Environmental Chemistry, 2021, 40(11):3283-3296(in Chinese).
    [4] 马晨, 周顺桂, 庄莉, 武春媛. 微生物胞外呼吸电子传递机制研究进展[J]. 生态学报, 2011, 31(7):2008- 2018. MA C, ZHOU SG, ZHUANG L, WU CY. Electron transfer mechanism of extracellular respiration:a review[J]. Acta Ecologica Sinica, 2011, 31(7):2008-2018(in Chinese).
    [5] GUO JH, YANG GQ, ZHUANG Z, MAI QJ, ZHUANG L. Redox potential-induced regulation of extracellular polymeric substances in an electroactive mixed community biofilm[J]. Science of the Total Environment, 2021, 797:149207.
    [6] PAL A, PAUL AK. Microbial extracellular polymeric substances:central elements in heavy metal bioremediation[J]. Indian Journal of Microbiology, 2008, 48(1):49-64.
    [7] LI SW, SHENG GP, CHENG YY, YU HQ. Redox properties of extracellular polymeric substances (EPS) from electroactive bacteria[J]. Scientific Reports, 2016, 6:39098.
    [8] FLEMMING HC, NEU TR, WOZNIAK DJ. The EPS matrix:the "house of biofilm cells"[J]. Journal of Bacteriology, 2007, 189(22):7945-7947.
    [9] LU Q, CHANG M, YU Z, ZHOU SG. The effects of three commonly used extraction methods on the redox properties of extracellular polymeric substances from activated sludge[J]. Environmental Technology, 2015, 36(22):2884-2891.
    [10] LIN ZQ, SHAO W, XU J, SHENG GP. Accurately quantifying the reductive capacity of microbial extracellular polymeric substance by mediated electrochemical oxidation method[J]. Science of the Total Environment, 2019, 673:541-545.
    [11] SEDENHO GC, MODENEZ I, MENDES GR, CRESPILHO FN. The role of extracellular polymeric substance matrix on Saccharomyces cerevisiae bioelectricity[J]. Electrochimica Acta, 2021, 393:139080.
    [12] YANG GQ, HUANG LY, YU Z, LIU XM, CHEN SS, ZENG JX, ZHOU SG, ZHUANG L. Anode potentials regulate Geobacter biofilms:new insights from the composition and spatial structure of extracellular polymeric substances[J]. Water Research, 2019, 159:294-301.
    [13] CASTRO L, ZHANG RY, MUÑOZ JA, GONZÁLEZ F, BLÁZQUEZ ML, Sand W, Ballester A. Characterization of exopolymeric substances (EPS) produced by Aeromonas hydrophila under reducing conditions[J]. Biofouling, 2014, 30(4):501-511.
    [14] SHENG GP, YU HQ. Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy[J]. Water Research, 2006, 40(6):1233-1239.
    [15] CARSTEA EM, BRIDGEMAN J, BAKER A, REYNOLDS DM. Fluorescence spectroscopy for wastewater monitoring:a review[J]. Water Research, 2016, 95:205-219.
    [16] XU RZ, CAO JS, FENG GY, LUO JY, FENG Q, NI BJ, FANG F. Fast identification of fluorescent components in three-dimensional excitation-emission matrix fluorescence spectra via deep learning[J]. Chemical Engineering Journal, 2022, 430:132893.
    [17] FELZ S, VERMEULEN P, van LOOSDRECHT MCM, LIN YM. Chemical characterization methods for the analysis of structural extracellular polymeric substances (EPS)[J]. Water Research, 2019, 157:201-208.
    [18] XIAO Y, ZHAO F. Electrochemical roles of extracellular polymeric substances in biofilms[J]. Current Opinion in Electrochemistry, 2017, 4(1):206-211.
    [19] TAN B, ZHOU SF, WANG Y, ZHANG BP, ZHOU LH, YUAN Y. Molecular insight into electron transfer properties of extracellular polymeric substances of electroactive bacteria by surface-enhanced Raman spectroscopy[J]. Science China Technological Sciences, 2019, 62(10):1679-1687.
    [20] YANG GQ, LIN J, ZENG EY, ZHUANG L. Extraction and characterization of stratified extracellular polymeric substances in Geobacter biofilms[J]. Bioresource Technology, 2019, 276:119-126.
    [21] PANKRATOVA G, HEDERSTEDT L, GORTON L. Extracellular electron transfer features of Gram- positive bacteria[J]. Analytica Chimica Acta, 2019, 1076:32-47.
    [22] HOU R, LUO C, ZHOU SF, WANG Y, YUAN Y, ZHOU SG. Anode potential-dependent protection of electroactive biofilms against metal ion shock via regulating extracellular polymeric substances[J]. Water Research, 2020, 178:115845.
    [23] CAO B, SHI L, BROWN RN, XIONG YJ, FREDRICKSON JK, ROMINE MF, MARSHALL MJ, LIPTON MS, BEYENAL H. Extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms:characterization by infrared spectroscopy and proteomics[J]. Environmental Microbiology, 2011, 13(4):1018-1031.
    [24] XU H, HE EK, PEIJNENBURG WJGM, SONG L, ZHAO L, XU XY, CAO XD, QIU H. Contribution of pristine and reduced microbial extracellular polymeric substances of different sources to Cu(II) reduction[J]. Journal of Hazardous Materials, 2021, 415:125616.
    [25] RODEN EE, KAPPLER A, BAUER I, JIANG J, PAUL A, STOESSER R, KONISHI H, XU HF. Extracellular electron transfer through microbial reduction of solid-phase humic substances[J]. Nature Geoscience, 2010, 3(6):417-421.
    [26] 杨钰婷, 陈瑾, 陈姗姗, 周顺桂. 群感效应对电活性微生物胞外电子传递的影响[J]. 微生物学报, 2020, 60(11):2399-2411. YANG YT, CHEN J, CHEN SS, ZHOU SG. Advances in understanding the impact of quorum sensing on extracellular electron transfer of electroactive microorganisms[J]. Acta Microbiologica Sinica, 2020, 60(11):2399-2411(in Chinese).
    [27] YAN WW, SUN FQ, LIU JB, ZHOU Y. Enhanced anaerobic phenol degradation by conductive materials via EPS and microbial community alteration[J]. Chemical Engineering Journal, 2018, 352:1-9.
    [28] GUO K, FREGUIA S, DENNIS PG, CHEN X, DONOSE BC, KELLER J, GOODING JJ, RABAEY K. Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems[J]. Environmental Science & Technology, 2013, 47(13):7563-7570.
    [29] DHAR BR, SIM J, RYU H, REN H, SANTO DOMINGO JW, CHAE J, LEE HS. Microbial activity influences electrical conductivity of biofilm anode[J]. Water Research, 2017, 127:230-238.
    [30] ZHUANG Z, YANG GQ, MAI QJ, GUO JH, LIU X, ZHUANG L. Physiological potential of extracellular polysaccharide in promoting Geobacter biofilm formation and extracellular electron transfer[J]. Science of the Total Environment, 2020, 741:140365.
    [31] ZHUANG Z, YANG GQ, ZHUANG L. Exopolysaccharides matrix affects the process of extracellular electron transfer in electroactive biofilm[J]. Science of the Total Environment, 2022, 806:150713.
    [32] LIU S, YI X, WU X, LI Q, WANG Y. Internalized carbon dots for enhanced extracellular electron transfer in the dark and light[J]. Small:Weinheim an Der Bergstrasse, Germany, 2020, 16(44):e2004194.
    [33] SHI YH, HUANG JH, ZENG GM, GU YL, CHEN YN, HU Y, TANG B, ZHOU JX, YANG Y, SHI LX. Exploiting extracellular polymeric substances (EPS) controlling strategies for performance enhancement of biological wastewater treatments:an overview[J]. Chemosphere, 2017, 180:396-411.
    [34] LIAO YH, LI SJ, ZHU XF, DANG ZZ, TANG SY, JI GD. The promotion and inhibition effect of graphene oxide on the process of microbial denitrification at low temperature[J]. Bioresource Technology, 2021, 340:125636.
    [35] SHEN L, LI ZF, WANG JJ, LIU AJ, LI ZH, YU RL, WU XL, LIU YD, LI JK, ZENG WM. Characterization of extracellular polysaccharide/protein contents during the adsorption of Cd(II) by Synechocystis sp. PCC6803[J]. Environmental Science and Pollution Research International, 2018, 25(21):20713-20722.
    [36] FANG LC, YANG SS, HUANG QY, XUE AF, CAI P. Biosorption mechanisms of Cu(II) by extracellular polymeric substances from Bacillus subtilis[J]. Chemical Geology, 2014, 386:143-151.
    [37] YU Q, FEIN JB. Sulfhydryl binding sites within bacterial extracellular polymeric substances[J]. Environmental Science & Technology, 2016, 50(11):5498-5505.
    [38] KECK A, RAU J, REEMTSMA T, MATTES R, STOLZ A, KLEIN J. Identification of quinoide redox mediators that are formed during the degradation of naphthalene-2- sulfonate by Sphingomonas xenophaga BN6[J]. Applied and Environmental Microbiology, 2002, 68(9):4341-4349.
    [39] WANG ZY, JU CJ, ZHANG R, HUA JQ, CHEN RP, LIU GX, YIN K, YU L. Acceleration of the bio-reduction of methyl orange by a magnetic and extracellular polymeric substance nanocomposite[J]. Journal of Hazardous Materials, 2021, 420:126576.
    [40] WANG J, FU ZZ, LIU GF, GUO N, LU H, ZHAN YY. Mediators-assisted reductive biotransformation of tetrabromobisphenol-A by Shewanella sp. XB[J]. Bioresource Technology, 2013, 142:192-197.
    [41] ZHOU XW, KANG FX, QU XL, FU HY, LIU J, ALVAREZ PJ, ZHU DQ. Probing extracellular reduction mechanisms of Bacillus subtilis and Escherichia coli with nitroaromatic compounds[J]. Science of the Total Environment, 2020, 724:138291.
    [42] LI ZW, LIN L, LIU X, WAN CL, LEE DJ. Understanding the role of extracellular polymeric substances in the rheological properties of aerobic granular sludge[J]. Science of the Total Environment, 2020, 705:135948.
    [43] LIAN ZY, YANG ZY, SONG WF, SUN MG, GAN Y, BAI XY. Effects of different exogenous cadmium compounds on the chemical composition and adsorption properties of two Gram-negative bacterial EPS[J]. Science of the Total Environment, 2022, 806:150511.
    [44] XIAO Y, WU S, ZHANG F, WU YC, YANG ZH, ZHAO F. Promoting electrogenic ability of microbes with negative pressure[J]. Journal of Power Sources, 2013, 229:79-83.
    [45] JORAND F, BOUÉ-BIGNE F, BLOCK JC, URBAIN V. Hydrophobic/Hydrophilic properties of activated sludge exopolymeric substances[J]. Water Science and Technology, 1998, 37(4/5):307-315.
    [46] WANG J, TIAN BY, BAO YH, QIAN C, YANG YR, NIU TQ, XIN BP. Functional exploration of extracellular polymeric substances (EPS) in the bioleaching of obsolete electric vehicle LiNixCoyMn1-x-yO2 Li-ion batteries[J]. Journal of Hazardous Materials, 2018, 354:250-257.
    [47] YE JX, LIN TH, HU JT, POUDEL R, CHENG ZW, ZHANG SH, CHEN JM, CHEN DZ. Enhancing chlorobenzene biodegradation by Delftia tsuruhatensis using a water-silicone oil biphasic system[J]. International Journal of Environmental Research and Public Health, 2019, 16(9):1629.
    [48] 杨贵芹. Geobacter soli胞外电子传递机制及其生物膜电活性研究[D]. 北京:中国科学院大学博士学位论文, 2017. YANG GQ. Study on mechanism of extracellular electron transport and electroactivity of Geobacter soli biofilm[D]. Beijing:Doctoral Dissertation of University of Chinese Academy of Sciences, 2017(in Chinese).
    [49] LI B, SUN JD, TANG C, ZHOU J, WU XY, JIA HH, WEI P, ZHANG YF, YONG XY. Coordinated response of Au-NPs/rGO modified electroactive biofilms under phenolic compounds shock:comprehensive analysis from architecture, composition, and activity[J]. Water Research, 2021, 189:116589.
    [50] 杨永刚, 李道波, 许玫英. 微生物胞外长距离电子传递网络研究进展[J]. 微生物学报, 2020, 60(9):2072- 2083. YANG YG, LI DB, XU MY. Research progress in microbial extracellular long-distance electron transport networks[J]. Acta Microbiologica Sinica, 2020, 60(9):2072-2083(in Chinese).
    [51] KUMAR A, HSU LHH, KAVANAGH P, BARRIÈRE F, LENS PNL, LAPINSONNIÈRE L, LIENHARD VJH, SCHRÖDER U, Jiang XC, Leech D. The ins and outs of microorganism-electrode electron transfer reactions[J]. Nature Reviews Chemistry, 2017, 1:24.
    [52] SIDDHARTH T, SRIDHAR P, VINILA V, TYAGI RD. Environmental applications of microbial extracellular polymeric substance (EPS):a review[J]. Journal of Environmental Management, 2021, 287:112307.
    [53] HU AD, CHENG XY, WANG C, KANG L, CHEN P, HE QX, ZHANG GM, YE J, ZHOU SG. Extracellular polymeric substances trigger an increase in redox mediators for enhanced sludge methanogenesis[J]. Environmental Research, 2020, 191:110197.
    [54] DING ZJ, BOURVEN I, GUIBAUD G, van HULLEBUSCH ED, PANICO A, PIROZZI F, ESPOSITO G. Role of extracellular polymeric substances (EPS) production in bioaggregation:application to wastewater treatment[J]. Applied Microbiology and Biotechnology, 2015, 99(23):9883-9905.
    [55] SHENG GP, ZHANG ML, YU HQ. Characterization of adsorption properties of extracellular polymeric substances (EPS) extracted from sludge[J]. Colloids and Surfaces B:Biointerfaces, 2008, 62(1):83-90.
    [56] TAHIR U, YASMIN A. Role of bacterial extracellular polymeric substances (EPS) in uptake and accumulation of co-contaminants[J]. International Journal of Environmental Science and Technology, 2019, 16(12):8081-8092.
    [57] ZHANG ZQ, XIA SQ, WANG XJ, YANG AM, XU B, CHEN L, ZHU ZL, ZHAO JF, JAFFREZIC-RENAULT N, LEONARD D. A novel biosorbent for dye removal:extracellular polymeric substance (EPS) of Proteus mirabilis TJ-1[J]. Journal of Hazardous Materials, 2009, 163(1):279-284.
    [58] JANAKI V, OH BT, VIJAYARAGHAVAN K, KIM JW, KIM SA, RAMASAMY AK, KAMALA-KANNAN S. Application of bacterial extracellular polysaccharides/polyaniline composite for the treatment of Remazol effluent[J]. Carbohydrate Polymers, 2012, 88(3):1002- 1008.
    [59] NDAO A, DROGUI P, TYAGI RD. Enhancement of landfill leachate treatment using extracellular polymeric substances as bio-flocculants[J]. Journal of Environmental Science and Health, Part B, 2022, 57(1):62-70.
    [60] XU QY, HAN B, WANG HD, WANG QD, ZHANG WJ, WANG DS. Effect of extracellular polymer substances on the tetracycline removal during coagulation process[J]. Bioresource Technology, 2020, 309:123316.
    [61] OBEROI AS, JIA YY, ZHANG HQ, KHANAL SK, LU H. Insights into the fate and removal of antibiotics in engineered biological treatment systems:a critical review[J]. Environmental Science & Technology, 2019, 53(13):7234-7264.
    [62] XU J, SHENG GP, MA Y, WANG LF, YU HQ. Roles of extracellular polymeric substances (EPS) in the migration and removal of sulfamethazine in activated sludge system[J]. Water Research, 2013, 47(14):5298-5306.
    [63] PI SS, LI A, CUI D, SU Z, FENG L, MA F, YANG JX. Biosorption behavior and mechanism of sulfonamide antibiotics in aqueous solution on extracellular polymeric substances extracted from Klebsiella sp. J1[J]. Bioresource Technology, 2019, 272:346-350.
    [64] ZHOU SF, LIAO ZY, ZHANG BP, HOU R, WANG Y, ZHOU SG, ZHANG YF, REN ZJ, YUAN Y. Photochemical behavior of microbial extracellular polymeric substances in the aquatic environment[J]. Environmental Science & Technology, 2021, 55(22):15090-15099.
    [65] TAN ZW, ABDOULAHI MH, YANG XY, ZHU YM, GONG BN, LI YT. Carbon source type can affect tetracycline removal by Pseudomonas sp. TC952 through regulation of extracellular polymeric substances composition and production[J]. Science of the Total Environment, 2022, 804:149907.
    [66] AN H, TIAN T, WANG ZT, JIN RF, ZHOU JT. Role of extracellular polymeric substances in the immobilization of hexavalent chromium by Shewanella putrefaciens CN32 unsaturated biofilms[J]. Science of the Total Environment, 2022, 810:151184.
    [67] HUANG JH, ELZINGA EJ, BRECHBUEHL Y, VOEGELIN A, KRETZSCHMAR R. Impacts of Shewanella putrefaciens strain CN-32 cells and extracellular polymeric substances on the sorption of As(V) and As(III) on Fe(III)-(hydr)oxides[J]. Environmental Science & Technology, 2011, 45(7):2804-2810.
    [68] CAO B, AHMED B, KENNEDY DW, WANG ZM, SHI L, MARSHALL MJ, FREDRICKSON JK, ISERN NG, MAJORS PD, BEYENAL H. Contribution of extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms to U(VI) immobilization[J]. Environmental Science & Technology, 2011, 45(13):5483-5490.
    [69] ZHANG X, FAN WY, YAO MC, YANG CW, SHENG GP. Redox state of microbial extracellular polymeric substances regulates reduction of selenite to elemental selenium accompanying with enhancing microbial detoxification in aquatic environments[J]. Water Research, 2020, 172:115538.
    [70] DONG DM, ZHANG LW, GUO ZY, HUA XY. The role of extracellular polymeric substances on the sorption of pentachlorophenol onto natural biofilms in different incubation times:a fluorescence study[J]. Chemistry and Ecology, 2017, 33(2):131-142.
    [71] WANG J, LU H, ZHOU Y, SONG Y, LIU GF, FENG YJ. Enhanced biotransformation of nitrobenzene by the synergies of Shewanella species and mediator- functionalized polyurethane foam[J]. Journal of Hazardous Materials, 2013, 252/253:227-232.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谢淑仪,陈姗姗,栾天罡. 电活性微生物胞外聚合物的特征与应用[J]. 微生物学报, 2023, 63(2): 540-552

复制
分享
文章指标
  • 点击次数:425
  • 下载次数: 1435
  • HTML阅读次数: 1373
  • 引用次数: 0
历史
  • 收稿日期:2022-06-07
  • 录用日期:2022-07-26
  • 在线发布日期: 2023-02-21
  • 出版日期: 2023-02-04
文章二维码