鼠疫减毒活疫苗研究现状与展望
作者:
基金项目:

病原微生物生物安全国家重点实验室开放课题(SKLPBS2135)


Live-attenuated Yersinia pestis vaccines
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [80]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    鼠疫(plague)是由鼠疫耶尔森氏菌(Yersinia pesits)引起的烈性传染病,在人类历史上曾造成约2亿人的死亡,在我国被列为甲类传染病。由于鼠疫菌具有高度致病性、传染性,被列为最具潜力的生物战剂和生物恐怖剂。在面临鼠疫威胁时,疫苗是最为有力的武器。鼠疫疫苗研究中,减毒活疫苗是重要的研究方向,现就鼠疫减毒活疫苗的研究现状进行综述,为新疫苗的研制提供参考。

    Abstract:

    Plague caused by Yersinia pestis is a fulminating infectious disease, resulting in nearly 200 million deaths in human history. It is listed as a category A infectious disease in China. As a highly infectious pathogen, Y. pestis is considered one of the most potential biological weapons and biothreat agents. Prophylactic vaccination is a powerful measure for counteracting this disease. In the development of plague vaccines, live-attenuated vaccine is an important research direction. This review introduces the recent progress, current challenges, as well as the future prospects on the development of live-attenuated plague vaccines.

    参考文献
    [1] PERRY RD, FETHERSTON JD. Yersinia pestis-etiologic agent of plague[J]. Clinical Microbiology Reviews, 1997, 10(1):35-66.
    [2] BARBIERI R, SIGNOLI M, CHEVÉ D, COSTEDOAT C, TZORTZIS S, ABOUDHARAM G, RAOULT D, DRANCOURT M. Yersinia pestis:the natural history of plague[J]. Clinical Microbiology Reviews, 2020, 34(1):e00044-e00019.
    [3] 杨瑞馥. 鼠疫耶尔森菌的研究及其军事医学意义[J]. 解放军医学杂志, 2012, 37(3):172-176. YANG RF. Progress in research concerning Yersinia pestis and its significance in military medicine[J]. Medical Journal of Chinese PLA, 2012, 37(3):172-176(in Chinese).
    [4] GALIMAND M, GUIYOULE A, GERBAUD G, RASOAMANANA B, CHANTEAU S, CARNIEL E, COURVALIN P. Multidrug resistance in Yersinia pestis mediated by a transferable plasmid[J]. The New England Journal of Medicine, 1997, 337(10):677-680.
    [5] GUIYOULE A, GERBAUD G, BUCHRIESER C, GALIMAND M, RAHALISON L, CHANTEAU S, COURVALIN P, CARNIEL E. Transferable plasmid-mediated resistance to streptomycin in a clinical isolate of Yersinia pestis[J]. Emerging Infectious Diseases, 2001, 7(1):43-48.
    [6] HINNEBUSCH BJ, ROSSO ML, SCHWAN TG, CARNIEL E. High-frequency conjugative transfer of antibiotic resistance genes to Yersinia pestis in the flea midgut[J]. Molecular Microbiology, 2002, 46(2):349-354.
    [7] RIEDEL S. Biological warfare and bioterrorism:a historical review[J]. Proceedings:Baylor University Medical Center, 2004, 17(4):400-406.
    [8] Recommendations of the CDC Strategic Planning Workgroup. Biological and chemical terrorism:strategic plan for preparedness and response[R]. Morbidity and Mortality Weekly Report. Recommendations and Reports, 2000, 49(RR-4), 1-14.
    [9] RASMUSSEN S, ALLENTOFT ME, NIELSEN K, ORLANDO L, SIKORA M, SJÖGREN KG, PEDERSEN AG, SCHUBERT M, DAM AV, KAPEL CMO, NIELSEN HB, BRUNAK S, AVETISYAN P, EPIMAKHOV A, KHALYAPIN MV, GNUNI A, KRIISKA A, LASAK I, METSPALU M, MOISEYEV V, et al. Early divergent strains of Yersinia pestis in Eurasia 5, 000 years ago[J]. Cell, 2015, 163(3):571-582.
    [10] BYVALOV AA, KONYSHEV IV, UVERSKY VN, DENTOVSKAYA SV, ANISIMOV AP. Yersinia outer membrane vesicles as potential vaccine candidates in protecting against plague[J]. Biomolecules, 2020, 10(12):1694.
    [11] FLORENT S, UVERSKY VLADIMIR N, ANISIMOV ANDREY P. Yersinia pestis plasminogen activator[J]. Biomolecules, 2020, 10(11):1554.
    [12] FEODOROVA VA, MOTIN VL. Plague vaccines//FEODOROVA VA, MOTIN VL. Vaccines Against Bacterial Biothreat Pathogens[M]. Kerala India:Research Signpost, 2011:175-233.
    [13] HANNI LL, ANDERSON DEBORAH M. Absence of inflammation and pneumonia during infection with nonpigmented Yersinia pestis reveals a new role for the pgm locus in pathogenesis[J]. Infection and Immunity, 2010, 78(1):220-230.
    [14] FETHERSTON JD, SCHUETZE P, PERRY RD. Loss of the pigmentation phenotype in Yersinia pestis is due to the spontaneous deletion of 102 kb of chromosomal DNA which is flanked by a repetitive element[J]. Molecular Microbiology, 1992, 6(18):2693-2704.
    [15] TITBALL RW, WILLIAMSON ED. Yersinia pestis (plague) vaccines[J]. Expert Opinion on Biological Therapy, 2004, 4(6):965-973.
    [16] RUSSELL P, ELEY SM, HIBBS SE, MANCHEE RJ, STAGG AJ, TITBALL RW. A comparison of Plague vaccine, USP and EV76 vaccine induced protection against Yersinia pestis in a murine model[J]. Vaccine, 1995, 13(16):1551-1556.
    [17] CENTERS FOR DISEASE CONTROL and PREVENTION. Fatal laboratory-acquired infection with an attenuated Yersinia pestis strain-Chicago, Illinois, 2009[J]. Morbidity and Mortality Weekly Report. Recommendations and Reports, 2011, 60(7):201-205. 1-14.
    [18] WANG XY, ZHANG XC, ZHOU DS, YANG RF. Live-attenuated Yersinia pestis vaccines[J]. Expert Review of Vaccines, 2013, 12(6):677-686.
    [19] SUN W, SINGH AK. Plague vaccine:recent progress and prospects[J]. Npj Vaccines, 2019, 4:11.
    [20] FREY SE, LOTTENBACH K, GRAHAM I, ANDERSON E, BAJWA K, MAY RC, MIZEL SB, GRAFF A, BELSHE RB. A phase I safety and immunogenicity dose escalation trial of plague vaccine, Flagellin/F1/V, in healthy adult volunteers (DMID 08-0066)[J]. Vaccine, 2017, 35(48 Pt B):6759-6765.
    [21] HU JL, JIAO L, HU YM, CHU K, LI JX, ZHU FC, LI TS, WU ZY, WEI D, MENG FY, WANG BX. One year immunogenicity and safety of subunit plague vaccine in Chinese healthy adults:an extended open-label study[J]. Human Vaccines & Immunotherapeutics, 2018, 14(11):2701-2705.
    [22] WINTER CC, CHERRY WB, MOODY MD. An unusual strain of Pasteurella pestis isolated from a fatal human case of plague[J]. Bulletin of the World Health Organization, 1960, 23:408-409.
    [23] DANIEL C, DEWITTE A, POIRET S, MARCEAU M, SIMONET M, MARCEAU L, DESCOMBES G, BOUTILLIER D, BENNACEUR N, BONTEMPS-GALLO S, LEMAÎTRE N, SEBBANE F. Polymorphism in the Yersinia LcrV antigen enables immune escape from the protection conferred by an LcrV-secreting Lactococcus lactis in a pseudotuberculosis mouse model[J]. Frontiers in Immunology, 2019, 10:1830.
    [24] SUN W, SANAPALA S, RAHAV H, CURTISS R. Oral administration of a recombinant attenuated Yersinia pseudotuberculosis strain elicits protective immunity against plague[J]. Vaccine, 2015, 33(48):6727-6735.
    [25] DEMEURE CE, DERBISE A, CARNIEL E. Oral vaccination against plague using Yersinia pseudotuberculosis[J]. Chemico-Biological Interactions, 2016, 267:89-95.
    [26] SINGH AK, CURTISS R, SUN W. A recombinant attenuated Yersinia pseudotuberculosis vaccine delivering a Y. pestis YopENt138-LcrV fusion elicits broad protection against plague and yersiniosis in mice[J]. Infection and Immunity, 2019, 87(10):e00296-e00219.
    [27] SINGH AK, WANG XR, SUN W. Oral vaccination with live attenuated Yersinia pseudotuberculosis strains delivering a FliC180-LcrV fusion antigen confers protection against pulmonary Y. Pestis Infection[J]. Vaccine, 2020, 38(21):3720-3728.
    [28] SANAPALA S, RAHAV H, PATEL H, SUN W, CURTISS R. Multiple antigens of Yersinia pestis delivered by live recombinant attenuated Salmonella vaccine strains elicit protective immunity against plague[J]. Vaccine, 2016, 34(21):2410-2416.
    [29] SHA J, KIRTLEY ML, KLAGES C, EROVA TE, TELEPNEV M, PONNUSAMY D, FITTS EC, BAZE WB, SIVASUBRAMANI SK, LAWRENCE WS, PATRIKEEV I, PEEL JE, ANDERSSON JA, KOZLOVA EV, TINER BL, PETERSON JW, McWILLIAMS D, PATEL S, ROTHE E, MOTIN VL, CHOPRA AK. A replication-defective human type 5 adenovirus-based trivalent vaccine confers complete protection against plague in mice and nonhuman Primates[J]. Clinical and Vaccine Immunology, 2016, 23(7):586-600.
    [30] KILGORE PAUL B, JIAN S, ANDERSSON JOURDAN A, MOTIN VLADIMIR L, CHOPRA ASHOK K. A new generation needle- and adjuvant-free trivalent plague vaccine utilizing adenovirus-5 nanoparticle platform[J]. Npj Vaccines, 2021, 6(1):21.
    [31] WANG SX, HEILMAN D, LIU FJ, GIEHL T, JOSHI S, HUANG XY, CHOU TH, GOGUEN J, LU S. A DNA vaccine producing LcrV antigen in oligomers is effective in protecting mice from lethal mucosal challenge of plague[J]. Vaccine, 2004, 22(25/26):3348-3357.
    [32] ALBRECHT MT, LIVINGSTON BD, PESCE JT, BELL MG, HANNAMAN D, KEANE-MYERS AM. Electroporation of a multivalent DNA vaccine cocktail elicits a protective immune response against anthrax and plague[J]. Vaccine, 2012, 30(32):4872-4883.
    [33] WANG SX, MBOUDJEKA I, GOGUEN JD, LU S. Antigen engineering can play a critical role in the protective immunity elicited by Yersinia pestis DNA vaccines[J]. Vaccine, 2010, 28(8):2011-2019.
    [34] WANG XR, SINGH AK, ZHANG XM, SUN W. Induction of protective antiplague immune responses by self-adjuvanting bionanoparticles derived from engineered Yersinia pestis[J]. Infection and Immunity, 2020, 88(5):e00081-e00020.
    [35] WANG XR, LI P, SINGH AK, ZHANG XM, GUAN ZQ, CURTISS R 3rd, SUN W. Remodeling Yersinia pseudotuberculosis to generate a highly immunogenic outer membrane vesicle vaccine against pneumonic plague[J]. PNAS, 2022, 119(11):e2109667119.
    [36] CARVALHO AL, MIQUEL-CLOPÉS A, WEGMANN U, JONES E, STENTZ R, TELATIN A, WALKER NJ, BUTCHER WA, BROWN PJ, HOLMES S, DENNIS MJ, WILLIAMSON ED, FUNNELL SGP, STOCK M, CARDING SR. Use of bioengineered human commensal gut bacteria-derived microvesicles for mucosal plague vaccine delivery and immunization[J]. Clinical and Experimental Immunology, 2019, 196(3):287-304.
    [37] ZHANG QW, WANG Q, TIAN G, QI ZZ, ZHANG XC, WU XH, QIU YF, BI YJ, YANG XY, XIN YQ, HE J, ZHOU JY, ZENG L, YANG RF, WANG XY. Yersinia pestis biovar Microtus strain 201, an avirulent strain to humans, provides protection against bubonic plague in Rhesus macaques[J]. Human Vaccines & Immunotherapeutics, 2014, 10(2):368-377.
    [38] 樊振亚, 罗运珩, 李凤, 张春华, 苏晓仙, 王身荣. 鼠疫耶尔森菌锡林郭勒高原型对人致病性试验[J]. 中国地方病防治杂志, 1994, 9(6):340-342. FAN ZY, LUO YH, LI F, ZHANG CH, SU XX, WANG S. 鼠疫耶尔森菌锡林郭勒高原型对人致病性试验[J]. Chinese Journal of Control of Endemic Disease, 1994, 9(6):340-342(in Chinese).
    [39] BALAKHONOV SV, VITYAZEVA SA, DUBROVINA VI, STAROVOITOVA TP, MUKHTURGIN GB, IVANOVA TA, KORYTOV KM, KOLESNIKOV SI. Immunogenesis in white mice infected with Yersinia pestis with different plasmid composition[J]. Bulletin of Experimental Biology and Medicine, 2017, 162(4):470-473.
    [40] JOEL B, COTE CHRISTOPHER K, WENDY W, ANTHONY B, STEVEN T, STEPHEN L, WIESLAW S. A Yersinia pestis YscN ATPase mutant functions as a live attenuated vaccine against bubonic plague in mice[J]. FEMS Microbiology Letters, 2012, 332(2):113-121.
    [41] COTE CK, BIRYUKOV SS, KLIMKO CP, SHOE JL, HUNTER M, Rosario-Acevedo R, Fetterer DP, Moody KL, Meyer JR, Rill NO, Dankmeyer JL, Worsham PL, Bozue JA, Welkos SL. Protection elicited by attenuated live Yersinia pestis vaccine strains against lethal infection with virulent Y. pestis[J]. Vaccines, 2021, 9(2):161.
    [42] ZHANG XC, QI ZZ, DU ZM, BI YJ, ZHANG QW, TAN YF, YANG HY, XIN YQ, YANG RF, WANG XY. A live attenuated strain of Yersinia pestis ΔyscB provides protection against bubonic and pneumonic plagues in mouse model[J]. Vaccine, 2013, 31(22):2539-2542.
    [43] SUN W, SIX D, KUANG XY, ROLAND KL, RAETZ CRH, CURTISS R III. A live attenuated strain of Yersinia pestis KIM as a vaccine against plague[J]. Vaccine, 2011, 29(16):2986-2998.
    [44] WANG XR, SINGH AK, SUN W. Protection and safety evaluation of live constructions derived from the Pgm- and pPCP1- Yersinia pestis strain[J]. Vaccines, 2020, 8(1):95.
    [45] DENTOVSKAYA SV, IVANOV SA, KOPYLOV PKH, SHAIKHUTDINOVA RZ, PLATONOV ME, KOMBAROVA TI, GAPEL'CHENKOVA TV, BALAKHONOV SV, ANISIMOV AP. Selective protective potency of Yersinia pestis ΔnlpD mutants[J]. Acta Naturae, 2015, 7(1):102-108.
    [46] TINER BL, SHA J, KIRTLEY ML, EROVA TE, POPOV VL, BAZE WB, VAN LIER CJ, PONNUSAMY D, ANDERSSON JA, MOTIN VL, CHAUHAN S, CHOPRA AK. Combinational deletion of three membrane protein-encoding genes highly attenuates Yersinia pestis while retaining immunogenicity in a mouse model of pneumonic plague[J]. Infection and Immunity, 2015, 83(4):1318-1338.
    [47] TINER BETHANY L, SHA J, CONG YZ, KIRTLEY MICHELLE L, ANDERSSON JOURDAN A, CHOPRA ASHOK K. Immunisation of two rodent species with new live-attenuated mutants of Yersinia pestis CO92 induces protective long-term humoral- and cell-mediated immunity against pneumonic plague[J]. NPJ Vaccines, 2016, 1(1):16020.
    [48] FENG JX, DENG YY, FU MJ, HU XY, LUO WB, LU ZY, DAI LP, YANG HY, ZHAO XD, DU ZM, WEN BH, JIANG LX, ZHOU DS, JIAO J, XIONG XL. Construction of a live-attenuated vaccine strain of Yersinia pestis EV76-B-SHUΔpla and evaluation of its protection efficacy in a mouse model by aerosolized intratracheal inoculation[J]. Frontiers in Cellular and Infection Microbiology, 2020, 10:473.
    [49] PALACE SAMANTHA G, PROULX MEGAN K, SHAN L, BAKER RICHARD E, GOGUEN JON D. Genome-wide mutant fitness profiling identifies nutritional requirements for optimal growth of Yersinia pestis in deep tissue[J]. mBio, 2014, 5(4):e01385-14.
    [50] ANDERSSON JOURDAN A, JIAN S, EROVA TATIANA E, FITTS ERIC C, DURAISAMY P, KOZLOVA ELENA V, KIRTLEY MICHELLE L, CHOPRA ASHOK K. Identification of new virulence factors and vaccine candidates for Yersinia pestis[J]. Frontiers in Cellular and Infection Microbiology, 2017, 7:448.
    [51] SONG YJ, TONG ZZ, WANG J, WANG L, GUO ZB, HAN YP, ZHANG JG, PEI DC, ZHOU DS, QIN HO, PANG X, HAN YJ, ZHAI JH, LI M, CUI BZ, QI ZZ, JIN LX, DAI RX, CHEN F, LI ST, YE C, DU ZM, LIN W, WANG J, YANG HM, WANG J, HUANG PT, YANG RF. Complete Genome Sequence of Yersinia pestis Strain 91001, an Isolate Avirulent to Humans[J]. DNA Research, 2004,11(3):179-197.
    [52] TIAN G, QI ZZ, QIU YF, WU XH, ZHANG QW, YANG XY, XIN YQ, HE J, BI YJ, WANG Q, ZHOU JY, FAN YX, ZHOU YZ, JIANG YQ, YANG RF, WANG XY. Comparison of virulence between the Yersinia pestis Microtus 201, an avirulent strain to humans, and the vaccine strain EV in Rhesus macaques, Macaca mulatta[J]. Human Vaccines & Immunotherapeutics, 2014, 10(12):3552-3560.
    [53] DENG WY, MARSHALL NC, ROWLAND JL, McCOY JM, WORRALL LJ, SANTOS AS, STRYNADKA NCJ, FINLAY BB. Assembly, structure, function and regulation of type III secretion systems[J]. Nature Reviews Microbiology, 2017, 15(6):323-337.
    [54] SIMPSON BRENT W, STEPHEN TM. Pushing the envelope:LPS modifications and their consequences[J]. Nature Reviews Microbiology, 2019, 17(7):403-416.
    [55] KNIREL YA, LINDNER B, VINOGRADOV EV, KOCHAROVA NA, SENCHENKOVA SN, SHAIKHUTDINOVA RZ, DENTOVSKAYA SV, FURSOVA NK, BAKHTEEVA IV, TITAREVA GM, BALAKHONOV SV, HOLST O, GREMYAKOVA TA, PIER GB, ANISIMOV AP. Temperature-dependent variations and intraspecies diversity of the structure of the lipopolysaccharide of Yersinia pestis[J]. Biochemistry, 2005, 44(5):1731-1743.
    [56] NEEDHAM BD, TRENT MS. Fortifying the barrier:the impact of lipid A remodelling on bacterial pathogenesis[J]. Nature Reviews Microbiology, 2013, 11(7):467-481.
    [57] FEODOROVA VA, PAN'KINA LN, SAVOSTINA EP, SAYAPINA LV, MOTIN VL, DENTOVSKAYA SV, SHAIKHUTDINOVA RZ, IVANOV SA, LINDNER B, KONDAKOVA AN, BYSTROVA OV, KOCHAROVA NA, SENCHENKOVA SN, HOLST O, PIER GB, KNIREL YA, ANISIMOV AP. A Yersinia pestis lpxM-mutant live vaccine induces enhanced immunity against bubonic plague in mice and Guinea pigs[J]. Vaccine, 2007, 25(44):7620-7628.
    [58] FEODOROVA V, PAN'KINA L, SAVOSTINA E, KUZNETSOV O, KONNOV N, SAYAPINA L, DENTOVSKAYA S, SHAIKHUTDINOVA R, AGEEV S, LINDNER B, KONDAKOVA A, BYSTROVA O, KOCHAROVA N, SENCHENKOVA S, HOLST O, PIER G, KNIREL Y, ANISIMOV A, MOTIN V. Pleiotropic effects of the lpxM mutation in Yersinia pestis resulting in modification of the biosynthesis of major immunoreactive antigens[J]. Vaccine, 2009, 27(16):2240-2250.
    [59] KOLODZIEJEK ANNA M, HOVDE CAROLYN J, MINNICH SCOTT A. Yersinia pestis Ail:multiple roles of a single protein[J]. Frontiers in Cellular and Infection Microbiology, 2012, 2:103.
    [60] LIU T, AGAR SL, SHA J, CHOPRA AK. Deletion of Braun lipoprotein gene (lpp) attenuates Yersinia pestis KIM/D27 strain:role of Lpp in modulating host immune response, NF-κB activation and cell death[J]. Microbial Pathogenesis, 2010, 48(1):42-52.
    [61] ALIPRANTIS AO, YANG RB, MARK MR, SUGGETT S, DEVAUX B, RADOLF JD, KLIMPEL GR, GODOWSKI P, ZYCHLINSKY A. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2[J]. Science, 1999, 285(5428):736-739.
    [62] TIDHAR A, FLASHNER Y, COHEN S, LEVI Y, ZAUBERMAN A, GUR D, AFTALION M, ELHANANY E, ZVI A, SHAFFERMAN A, MAMROUD E. The NlpD lipoprotein is a novel Yersinia pestis virulence factor essential for the development of plague[J]. PLoS One, 2009, 4(9):e7023.
    [63] TINER BETHANY L, JIAN S, DURAISAMY P, BAZE WALLACE B, FITTS ERIC C, POPOV VSEVOLOD L, van LIER CHRISTINA J, EROVA TATIANA E, CHOPRA ASHOK K. Intramuscular immunization of mice with a live-attenuated triple mutant of Yersinia pestis CO92 induces robust humoral and cell-mediated immunity to completely protect animals against pneumonic plague[J]. Clinical and Vaccine Immunology:CVI, 2015, 22(12):1255-1268.
    [64] SUN W, ROLAND KL, BRANGER CG, KUANG XY, CURTISS R 3rd. The role of relA and spoT in Yersinia pestis KIM5 pathogenicity[J]. PLoS One, 2009, 4(8):e6720.
    [65] SUN W, ROLAND KL, KUANG XY, BRANGER CG, Curtiss R 3rd. Yersinia pestis with regulated delayed attenuation as a vaccine candidate to induce protective immunity against plague[J]. Infection and Immunity, 2010, 78(3):1304-1313.
    [66] YANG XB, PAN JF, WANG Y, SHEN XH. Type VI secretion systems present new insights on pathogenic Yersinia[J]. Frontiers in Cellular and Infection Microbiology, 2018, 8:260.
    [67] FORD DONNA C, JOSHUA GEORGE WP, WREN BRENDAN W, OYSTON PETRA CF. The importance of the magnesium transporter MgtB for virulence of Yersinia pseudotuberculosis and Yersinia pestis[J]. Microbiology (Reading, England), 2014, 160(Pt 12):2710-2717.
    [68] SARA SB, CHERISH L, QIAN LF, GONG X, WAEL B, HENRY B, ROSMELY H, LI ZW, PLANO GREGORY V, KURT S. Chromosomally-encoded Yersinia pestis type III secretion effector proteins promote infection in cells and in mice[J]. Frontiers in Cellular and Infection Microbiology, 2019, 9:23.
    [69] CAO SY, CHEN YL, YAN YF, ZHU SB, TAN YF, WANG T, SONG YJ, DENG HT, YANG RF, DU ZM. Secretome and comparative proteomics of Yersinia pestis identify two novel E3 ubiquitin ligases that contribute to plague virulence[J]. Molecular & Cellular Proteomics:MCP, 2021, 20:100066.
    [70] SOUTHERN SJ, SCOTT AE, JENNER DC, IRELAND PM, NORVILLE IH, SARKAR-TYSON M. Survival protein A is essential for virulence in Yersinia pestis[J]. Microbial Pathogenesis, 2016, 92:50-53.
    [71] EICHELBERGER KARA R, SEPÚLVEDA VICTORIA E, JOHN F, SELITSKY SARA R, MIECZKOWSKI PIOTR A, PARKER JOEL S, GOLDMAN WILLIAM E. Tn-seq analysis identifies genes important for Yersinia pestis adherence during primary pneumonic plague[J]. mSphere, 2020, 5(4):e00715-e00720.
    [72] CHANDLER COURTNEY E, HARBERTS ERIN M, PELLETIER MARK R, IYARIT T, JONES JACE W, HAJJAR ADELINE M, SAHL JASON W, GOODLETT DAVID R, PRIDE AARON C, RASKO DAVID A, STEPHEN TM, BISHOP RUSSELL E, ERNST ROBERT K. Early evolutionary loss of the lipid A modifying enzyme PagP resulting in innate immune evasion in Yersinia pestis[J]. PNAS, 2020, 117(37):22984-22991.
    [73] CRANE SD, BANERJEE SK, EICHELBERGER KR, KURTEN RC, GOLDMAN WE, PECHOUS RD. The Yersinia pestis GTPase BipA promotes pathogenesis of primary pneumonic plague[J]. Infection and Immunity, 2021, 89(2):e0067320.
    [74] CAO SY, LIU XY, HUANG Y, YAN YF, ZHOU CL, SHAO C, YANG RF, ZHU WM, DU ZM, JIA CX. Proteogenomic discovery of sORF-encoded peptides associated with bacterial virulence in Yersinia pestis[J]. Communications Biology, 2021, 4:1248.
    [75] WHO Workshop. Efficacy trials of Plague Vaccines:endpoints, trial design, site selection[R]. Geneva, Switzerland, WHO, 2018:1-12.
    [76] MEKA-MECHENKO TV. F1-negative natural Y. pestis strains. Advances in Experimental Medicine and Biology[M]. Boston:Kluwer Academic Publishers, 2006:379-381.
    [77] FEODOROVA VA, SAYAPINA LV, MOTIN VL. Assessment of live plague vaccine candidates. Vaccine Design[M]. New York, NY:Springer New York, 2016:487-498.
    [78] QI ZZ, ZHOU L, ZHANG QW, REN LL, DAI RX, WU BC, WANG T, ZHU ZW, YANG YH, CUI BZ, WANG ZY, WANG H, QIU YF, GUO ZB, YANG RF, WANG XY. Comparison of mouse, Guinea pig and rabbit models for evaluation of plague subunit vaccine F1+rV270[J]. Vaccine, 2010, 28(6):1655-1660.
    [79] FEODOROVA VALENTINA A, LYAPINA ANNA M, KHIZHNYAKOVA MARIA A, ZAITSEV SERGEY S, SALTYKOV YURY V, MOTIN VLADIMIR L. Yersinia pestis antigen F1 but not LcrV induced humoral and cellular immune responses in humans immunized with live plague vaccine-comparison of immunoinformatic and immunological approaches[J]. Vaccines, 2020, 8(4):698.
    [80] KILGORE PAUL B, JIAN S, HENDRIX EMILY K, MOTIN VLADIMIR L, CHOPRA ASHOK K. Combinatorial viral vector-based and live attenuated vaccines without an adjuvant to generate broader immune responses to effectively combat pneumonic plague[J]. mBio, 2021:e0322321.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郭晓,仝泽辉,杜宗敏. 鼠疫减毒活疫苗研究现状与展望[J]. 微生物学报, 2023, 63(2): 567-581

复制
分享
文章指标
  • 点击次数:257
  • 下载次数: 1056
  • HTML阅读次数: 1122
  • 引用次数: 0
历史
  • 收稿日期:2022-07-01
  • 录用日期:2022-09-24
  • 在线发布日期: 2023-02-21
  • 出版日期: 2023-02-04
文章二维码