一株耐盐碱乳酪短杆菌G20响应盐碱胁迫的差异代谢物分析
作者:
基金项目:

国家自然科学基金(U2003305,31860018);新疆维吾尔族自治区天山创新团队(2020D14022);新疆维吾尔自治区优秀青年科技人才培养计划(天山杰青)(2020Q02);国家重点研发计划项目课题(2019YFC1606102)


Analysis of differential metabolites of Brevibacterium casei G20 in response to saline-alkali stress
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [50]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】探究耐盐碱乳酪短杆菌G20响应盐碱胁迫的代谢物组成以及代谢物合成潜力,为潜在功能分子和盐碱诱导的快速稳定响应逻辑门基因线路的挖掘提供参考。【方法】利用液相色谱-质谱联用技术(LC-MS)检测乳酪短杆菌G20盐碱环境与正常环境下4个生长时期的代谢产物。着重对富含高差异变化倍数代谢物的适应期与指数期进行分析。【结果】乳酪短杆菌G20可以在pH 10.0、9% NaCl环境中正常生长,同时环境pH值会随菌株生长逐步下降。综合正负离子2种模式,乳酪短杆菌G20在盐碱环境下各生长时期间差异代谢物数量分别为正常环境的0.69、0.75和0.81倍。盐碱胁迫诱导下适应期与指数期差异代谢物主要为苯环型化合物、有机酸及其衍生物与有机杂环类化合物。其中上调的有机酸化合物吲哚-3-乙酸、犬尿酸和葡萄糖酸指数期质谱信号强度低于适应期。菌株中可能存在的渗透保护剂有l-瓜氨酸、l-脯氨酸、N-乙酰鸟氨酸和左旋肉碱等。适应期变化倍数较大或质谱信号强度较高的差异化合物有毛果芸香碱、植物鞘氨醇和柠檬酸等,指数期有组胺、l-脯氨酸和硫胺素等。菌株差异代谢通路集中在氨基酸代谢与碳水化合物代谢。菌株代谢物中存在甜菜碱和葫芦巴碱的结构类似物。此外受盐碱胁迫诱导变化幅度较大的代谢物如组胺、l-脯氨酸和胆碱等化合物,能够通过代谢组学与基因组学数据耦合,推测其合成与代谢通路。【结论】菌株会外泌吲哚-3-乙酸、犬尿酸和葡萄糖酸等有机酸化合物降低环境pH值,积累l-瓜氨酸和l-脯氨酸等渗透保护剂维持渗透压平衡。菌株可能具备合成甜菜碱、葫芦巴碱和毛果芸香碱结构类似物的能力,为以原核细菌为底盘构建新的合成路径提供了可能。菌株中组胺、l-脯氨酸和胆碱等化合物合成与代谢通路中酶的编码基因及上下游元件序列,可以为受盐碱理化因子诱导的逻辑门基因菌为底盘构建新的合成路径提供了可能。菌株中组胺、l-脯氨酸和胆碱等化合物合成与代谢通路上酶的编码基因及上下游元件序列,可以为受盐碱理化因子诱导的逻辑门基因线路的梳理提供参考。

    Abstract:

    [Objective] To explore the metabolite composition and metabolite synthesis potential of Brevibacterium casei G20 in response to saline-alkali stress, and to provide a reference for the mining of potential functional molecules and the rapidly and stably responsive genetic logic gate line induced by saline-alkali. [Methods] We used LC-MS to detect the metabolites of G20 at four growth phases in saline-alkali and normal environments, and focused on the analysis of the lag and logarithmic phases rich in metabolites with high differential fold changes. [Results] B. casei G20 grew well in the environment with pH 10.0 and 9% NaCl, and the pH of the environment gradually decreased with the growth. According to the detection result in positive ion mode and negative ion mode, the numbers of differential metabolites of B. casei G20 during growth in the saline-alkali environment were 0.69, 0.75, and 0.81 times that in the normal environment, respectively. The metabolites that differed between the lag and logarithmic phases under saline-alkali stress were mainly benzenoids, organic acids and their derivatives, and organic heterocyclic compounds. Among them, the MS signal intensity of the organic acids such as indole-3-acetic acid, kynurenic acid, and gluconic acid that were up-regulated in the logarithmic phase was lower than that in the lag phase. The possible osmoprotectants in the strain were l-citrulline, l-proline, N-acetylornithine, l-carnitine, etc. The differential compounds with larger fold changes or higher MS signal intensity in the lag phase were pilocarpine, phytosphingosine, and citrate, and in the logarithmic phase were histamine, l-proline, and thiamine. The differential metabolic pathways of the strain were mainly the amino acid metabolism and carbohydrate metabolism. There were also structural analogs of betaine and trigonelline in the metabolites of the strain. In addition, for metabolites with large changes induced by saline-alkali stress, such as histamine, l-proline, and choline, we could infer their synthetic and metabolic pathways through the coupling of metabolomic and genomic data. [Conclusion] The strain secreted organic acids such as indole-3-acetic acid, kynurenic acid, and Gluconic acid to reduce the pH value of the environment, and accumulated osmoprotectants such as l-citrulline and l-proline to maintain osmotic balance. In addition, the strain may also have the ability to synthesize structural analogs of betaine, trigonelline, and pilocarpine, allowing the construction of a new synthetic pathway based on prokaryotic bacteria. Moreover, the enzyme-coding genes and upstream and downstream element sequences in the synthetic and metabolic pathways of compounds such as histamine, l-proline, and choline in the strain can serve as a reference for sorting out the logic gate gene circuits induced by saline-alkali stress.

    参考文献
    [1] 杨多, 岳海涛, 伍杰毅, 赵鲁玉, 邢祥祥, 郭飞, 杨洁. 胡杨叶片及韧皮部内生细菌多样性及生物学功能分析[J]. 微生物学报, 2022, 62(1):213-226. YANG D, YUE HT, WU JY, ZHAO LY, XING XX, GUO F, YANG J. Diversity and biological function of endophytic bacteria in Populus euphratica leaves and phloem[J]. Acta Microbiologica Sinica, 2022, 62(1):213-226(in Chinese).
    [2] ZHOU C, XUE YF, MA YH. Characterization and high-efficiency secreted expression in Bacillus subtilis of a thermo-alkaline β-mannanase from an alkaliphilic Bacillus clausii strain S10[J]. Microbial Cell Factories, 2018, 17(1):124.
    [3] ZHAI L, XUE YF, SONG YH, XIAN MJ, YIN L, ZHONG NQ, XIA GX, MA YH. Overexpression of AaPal, a peptidoglycan-associated lipoprotein from Alkalomonas amylolytica, improves salt and alkaline tolerance of Escherichia coli and Arabidopsis thaliana[J]. Biotechnology Letters, 2014, 36(3):601-607.
    [4] LEÓN MJ, HOFFMANN T, SÁNCHEZ-PORRO C, HEIDER J, VENTOSA A, BREMER E. Compatible solute synthesis and import by the moderate halophile Spiribacter salinus:physiology and genomics[J]. Frontiers in Microbiology, 2018, 9:108.
    [5] SHARMA V, Sehgal R, Gupta R. Polyhydroxyalkanoate (PHA):properties and modifications[J]. Polymer, 2021, 212:123161.
    [6] GUTIÉRREZ-ARNILLAS E, Deive FJ, Rodríguez A, Sanromán MÁ. Unravelling the suitability of biological induction for halophilic lipase production by Halomonas sp. LM1C cultures[J]. Bioresource Technology, 2017, 239:368-377.
    [7] YUE HT, LING C, YANG T, CHEN XB, CHEN YL, DENG HT, WU Q, CHEN JC, CHEN GQ. A seawater-based open and continuous process for polyhydroxyalkanoates production by recombinant Halomonas campaniensis LS21 grown in mixed substrates[J].Biotechnology for Biofuels, 2014, 7(1):1-12.
    [8] ZHANG X, LIN YN, CHEN GQ. Halophiles as chassis for bioproduction[J]. Advanced Biosystems, 2018, 2(11):1800088.
    [9] KUNTE H, LENTZEN G, GALINSKI E. Industrial production of the cell protectant ectoine:protection mechanisms, processes, and products[J]. Current Biotechnology, 2014, 3(1):10-25.
    [10] NYYSSOLA A, KEROVUO J, KAUKINEN P, von WEYMARN N, REINIKAINEN T. Extreme halophiles synthesize betaine from glycine by methylation[J]. The Journal of Biological Chemistry, 2000, 275(29):22196-22201.
    [11] PARK YL, BHATIA SK, GURAV R, CHOI TR, KIM HJ, SONG HS, PARK JY, HAN YH, LEE SM, PARK SL, LEE HS, KIM YG, YANG YH. Fructose based hyper production of poly-3-hydroxybutyrate from Halomonas sp. YLGW01 and impact of carbon sources on bacteria morphologies[J]. International Journal of Biological Macromolecules, 2020, 154:929-936.
    [12] MAHANSARIA R, Dhara A, Saha A, Haldar S, Mukherjee J. Production enhancement and characterization of the polyhydroxyalkanoate produced by Natrinema ajinwuensis (as synonym) ≡ Natrinema altunense strain RM-G10[J]. International Journal of Biological Macromolecules, 2018, 107:1480-1490.
    [13] YE JW, HU DK, CHE XM, JIANG XR, LI T, CHEN JC, ZHANG HM, CHEN GQ. Engineering of Halomonas bluephagenesis for low cost production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from glucose[J]. Metabolic Engineering, 2018, 47:143-152.
    [14] BAJPAI B, CHAUDHARY M, SAXENA J. Production and characterization of α-amylase from an extremely halophilic archaeon, Haloferax sp. HA10[J]. Food Technology and Biotechnology, 2015, 53(1):11-17.
    [15] CZECH L, HERMANN L, STÖVEKEN N, RICHTER AA, HÖPPNER A, SMITS SHJ, HEIDER J, BREMER E. Role of the extremolytes ectoine and hydroxyectoine as stress protectants and nutrients:genetics, phylogenomics, biochemistry, and structural analysis[J]. Genes, 2018, 9(4):177.
    [16] TANI Y, MIYAKE R, YUKAMI R, DEKISHIMA Y, CHINA H, SAITO S, KAWABATA H, MIHARA H. Functional expression of l-lysine α-oxidase from Scomber japonicus in Escherichia coli for one-pot synthesis of l-pipecolic acid from dl-lysine[J]. Applied Microbiology and Biotechnology, 2015, 99(12):5045-5054.
    [17] SCHAGEN S, OVERHAGEN S, BILSTEIN A. New data confirm skin revitalizing and stress protection by Glycoin natural[J]. Europe Cosmetics, 2017:14-17.
    [18] JHA B, GONTIA I, HARTMANN A. The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential[J]. Plant and Soil, 2012, 356(1):265-277.
    [19] DOLCI P, BARMAZ A, ZENATO S, PRAMOTTON R, ALESSANDRIA V, COCOLIN L, RANTSIOU K, AMBROSOLI R. Maturing dynamics of surface microflora in Fontina PDO cheese studied by culture-dependent and-independent methods[J]. Journal of Applied Microbiology, 2009, 106(1):278-287.
    [20] KIRAN GS, LIPTON AN, PRIYADHARSHINI S, ANITHA K, SUÁREZ LEC, ARASU MV, CHOI KC, SELVIN J, AL-DHABI NA. Antiadhesive activity of poly-hydroxy butyrate biopolymer from a marine Brevibacterium casei MSI04 against shrimp pathogenic vibrios[J]. Microbial Cell Factories, 2014, 13:114.
    [21] FEMINA CAROLIN C, Kumar PS, Joshiba GJ, Madhesh P, Ramamurthy R. Sustainable strategy for the enhancement of hazardous aromatic amine degradation using lipopeptide biosurfactant isolated from Brevibacterium casei[J]. Journal of Hazardous Materials, 2021, 408:124943.
    [22] ATEYYAT MA, SHATNAWI M, AL-MAZRA'AWI M. Isolation and identification of culturable forms of bacteria from the sweet potato whitefly Bemesia tabaci Genn. (Homoptera:Aleyrodidae) in Jordan[J]. Turkish Journal of Agriculture and Forestry, 2010:34(3):225-234.
    [23] SKOWRONEK M, SAJNAGA E, PLESZCZYŃSKA M, KAZIMIERCZAK W, LIS M, WIATER A. Bacteria from the midgut of common cockchafer (Melolontha melolontha L.) larvae exhibiting antagonistic activity against bacterial symbionts of entomopathogenic nematodes:isolation and molecular identification[J]. International Journal of Molecular Sciences, 2020, 21(2):580.
    [24] ARUMUGAM MK, PAAL MC, DONOHUE TM Jr, GANESAN M, OSNA NA, KHARBANDA KK. Beneficial effects of betaine:a comprehensive review[J]. Biology, 2021, 10(6):456.
    [25] BEYGI Z, NEZAMZADEH Z, RABIEI M, MIRAKHORLI N. Enhanced accumulation of trigonelline by elicitation and osmotic stresses in fenugreek callus culture[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2021, 147(1):169-174.
    [26] SCHMIDT T, HEISE N, MERZWEILER K, DEIGNER HP, AL-HARRASI A, CSUK R. Concise synthesis of both enantiomers of pilocarpine[J]. Molecules (Basel, Switzerland), 2021, 26(12):3676.
    [27] SARETHY IP, SAXENA Y, KAPOOR A, SHARMA M, SHARMA SK, GUPTA V, GUPTA S. Alkaliphilic bacteria:applications in industrial biotechnology[J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(7):769-790.
    [28] CHUN BH, Han DM, Kim KH, Jeong SE, Park D, Jeon CO. Genomic and metabolic features of Tetragenococcus halophilus as revealed by pan-genome and transcriptome analyses[J]. Food Microbiology, 2019, 83:36-47.
    [29] KIM KH, JIA BL, JEON CO. Identification of trans-4-hydroxy-L-proline as a compatible solute and its biosynthesis and molecular characterization in Halobacillus halophilus[J]. Frontiers in Microbiology, 2017, 8:2054.
    [30] del MORAL A, SEVERIN J, RAMOS-CORMENZANA A, TRÜPER HG, GALINSKI EA. Compatible solutes in new moderately halophilic isolates[J]. FEMS Microbiology Letters, 1994, 122(1/2):165-172.
    [31] SANTOS G, HORMIGA JA, ARENSE P, CÁNOVAS M, TORRES NV. Modelling and analysis of central metabolism operating regulatory interactions in salt stress conditions in a L-carnitine overproducing E. coli strain[J]. PLoS One, 2012, 7(4):e34533.
    [32] AIKAWA S, NISHIDA A, HASUNUMA T, CHANG JS, KONDO A. Short-term temporal metabolic behavior in halophilic Cyanobacterium Synechococcus sp. strain PCC 7002 after salt shock[J]. Metabolites, 2019, 9(12):297.
    [33] BREIDEN B, Sandhoff K. The role of sphingolipid metabolism in cutaneous permeabilitybarrier formation[J]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2014, 1841(3):441-452.
    [34] RABIONET M, Gorgas K, Sandhoff R. Ceramide synthesis in the epidermis[J]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2014, 1841(3):422-434.
    [35] van SMEDEN J, Janssens M, Gooris GS, Bouwstra JA. The important role of stratum corneum lipids for the cutaneous barrier function[J]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2014, 1841(3):295-313.
    [36] PROKSCH E, BRANDNER JM, JENSEN JM. The skin:an indispensable barrier[J]. Experimental Dermatology, 2008, 17(12):1063-1072.
    [37] LORENTZEN G, WESMAJERVI BREILAND MS, ØSTLI J, WANG-ANDERSEN J, OLSEN RL. Growth of halophilic microorganisms and histamine content in dried salt-cured cod (Gadus morhua L.) stored at elevated temperature[J]. LWT-Food Science and Technology, 2015, 60(1):598-602.
    [38] PHAM N, PHAM K, LEE C, JANG S. Novel insight into the role of thiamine for the growth of a lichen-associated Arctic bacterium, Sphingomonas sp. in the light[J]. Korean Journal of Microbiology, 2019, 55(1):17-24.
    [39] 姚婉婷, 李可, 宋娜, 王慧, 卢慧芳, 陈雄, 李沛, 姚娟, 代俊. 硫胺素对鲁氏接合酵母高盐适应性的影响[J]. 中国酿造, 2020, 39(11):78-84. YAO WT, LI K, SONG N, WANG H, LU HF, CHEN X, LI P, YAO J, DAI J. Effect of thiamine on high-salt adaptability of Zygosaccharomyces rouxii[J]. China Brewing, 2020, 39(11):78-84(in Chinese).
    [40] 周俊, 孙爱珍, 曾礼漳, 李哲. 硫胺素通过提高线粒体氧化状态促进植物快速响应外界胁迫的研究[J]. 激光生物学报, 2012, 21(4):340-345. ZHOU J, SUN AZ, ZENG LZ, LI Z. Thiamin promotes plant rapid response to external stress through improving mitochondrial oxidation status[J]. Acta Laser Biology Sinica, 2012, 21(4):340-345(in Chinese).
    [41] 王伟伟, 唐鸿志, 许平. 嗜盐菌耐盐机制相关基因的研究进展[J]. 微生物学通报, 2015, 42(3):550-558. WANG WW, TANG HZ, XU P. Salt-tolerance related genes in halophilic bacteria and Archaea[J]. Microbiology China, 2015, 42(3):550-558(in Chinese).
    [42] IFTIKHAR S, GILANI S, TAJ B, RAHEEL A, UD-DIN-IMTIAZ U, TERMIZI S, AL-SHAKBAN M, ALI H. Design, synthesis and biological evaluation of organotin(IV) complexes of flumequine and cetirizine[J]. Journal of the Serbian Chemical Society, 2018, 83(4):425-437.
    [43] SHAN TT, ZHANG X, GUO CF, GUO SH, ZHAO XB, YUAN YH, YUE TL. Identity, synthesis, and cytotoxicity of forchlorfenuron metabolites in kiwifruit[J]. Journal of Agricultural and Food Chemistry, 2021, 69(33):9529-9535.
    [44] WANG C, Ma C, Gong LH, Dai S, Li YX. Preventive and therapeutic role of betaine in liver disease:a review on molecular mechanisms[J]. European Journal of Pharmacology, 2021, 912:174604.
    [45] UELAND PM. Choline and betaine in health and disease[J]. Journal of Inherited Metabolic Disease, 2011, 34(1):3-15.
    [46] LI YY, LI Q, WANG CY, LOU Z, LI QC. Trigonelline reduced diabetic nephropathy and insulin resistance in type 2 diabetic rats through peroxisome proliferator-activated receptor-Γ[J]. Experimental and Therapeutic Medicine, 2019, 18(2):1331-1337.
    [47] SCHWARTZ LM, WOODA AJ, GIBSON DJ. Trigonelline accumulation in leaves of Panicum virgatum seedlings[J]. Natural Product Communications, 2014, 9(8):1163-1166.
    [48] ASHIHARA H, LUDWIG IA, KATAHIRA R, YOKOTA T, FUJIMURA T, CROZIER A. Trigonelline and related nicotinic acid metabolites:occurrence, biosynthesis, taxonomic considerations, and their roles in planta and in human health[J]. Phytochemistry Reviews, 2015, 14(5):765-798.
    [49] SAYED AM, HASSAN MHA, ALHADRAMI HA, HASSAN HM, GOODFELLOW M, RATEB ME. Extreme environments:microbiology leading to specialized metabolites[J]. Journal of Applied Microbiology, 2020, 128(3):630-657.
    [50] GU ZJ, WANG L, RUDULIER D, ZHANG B, YANG SS. Erratum to:characterization of the Glycine betaine biosynthetic genes in the moderately halophilic bacterium Halobacillus dabanensis D-8T[J]. Current Microbiology, 2009, 59(6):665.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

伍杰毅,岳海涛,赵鲁玉,邢祥祥,胡红英,孙淑文,马晓云. 一株耐盐碱乳酪短杆菌G20响应盐碱胁迫的差异代谢物分析[J]. 微生物学报, 2023, 63(2): 582-600

复制
分享
文章指标
  • 点击次数:396
  • 下载次数: 1176
  • HTML阅读次数: 1138
  • 引用次数: 0
历史
  • 收稿日期:2022-05-14
  • 录用日期:2022-07-06
  • 在线发布日期: 2023-02-21
  • 出版日期: 2023-02-04
文章二维码