比较基因组学解析谷物醋醋醅中巴氏醋杆菌和欧洲驹形杆菌的功能差异
作者:
基金项目:

国家自然科学基金(31771967)


Comparative genomics reveals the functional differences between Acetobacter pasteurianus and Komagataeibacter europaeus in vinegar pei of Zhenjiang aromatic vinegar
Author:
  • PENG Mingye

    PENG Mingye

    Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China;National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HUANG Ting

    HUANG Ting

    Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China;National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Xiaojuan

    ZHANG Xiaojuan

    National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, China;Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Wuxi 214122, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHAI Lijuan

    CHAI Lijuan

    National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, China;Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Wuxi 214122, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LU Zhenming

    LU Zhenming

    National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, China;Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Wuxi 214122, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SHI Jinsong

    SHI Jinsong

    Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Wuxi 214122, Jiangsu, China;School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XU Zhenghong

    XU Zhenghong

    Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China;National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, China;Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Wuxi 214122, Jiangsu, China;National Engineering Research Center of Solid-State Brewing, Luzhou 646000, Sichuan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [43]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】基于比较基因组分析,探究镇江香醋醋醅中不同醋酸菌的功能差异。【方法】利用分离培养技术结合16S rRNA基因全长测序获得不同分类地位的醋酸菌;应用比较基因组学结合发酵性能实现不同醋酸菌生长和代谢的差异比较。【结果】巴氏醋杆菌和欧洲驹形杆菌为镇江香醋醋醅中的主要醋酸菌。其中,欧洲驹形杆菌的GC含量更高、基因组更大。功能注释结果表明巴氏醋杆菌和欧洲驹形杆菌的碳水化合物、氨基酸相关基因数量及种类差异较大,欧洲驹形杆菌的碳水化合物活性酶数量更多。相比巴氏醋杆菌,欧洲驹形杆菌中富集的功能差异基因主要参与磷酸戊糖途径、脂肪酸生物合成、果糖和甘露糖代谢等代谢途径。验证结果表明欧洲驹形杆菌可通过产生更多的乙醇脱氢酶、乙醛脱氢酶和大量的ATP,并改变细胞膜脂肪酸组成来提高乙醇的转化率。【结论】明确了巴氏醋杆菌和欧洲驹形杆菌基因之间的差异。欧洲驹形杆菌通过更多的能量积累、更高的乙醇转化相关酶酶活力和细胞膜脂肪酸组成的改变,来改善胞内微环境以适应高酸环境。本研究得到的结果可加深对不同醋酸菌耐酸机制的理解。

    Abstract:

    [Objective] To explore the functional differences of different acetic acid bacteria in the vinegar pei of Zhenjiang aromatic vinegar via comparative genomics. [Methods] The taxonomic status of acetic acid bacteria were identified by culture-dependent technology and 16S rRNA gene full-length sequencing. The growth and metabolism of different acetic acid bacteria were compared by comparative genomic analysis combined with fermentation performance tests. [Results] Acetobacter pasteurianus and Komagataeibacter europaeus were the main acetic acid bacteria in the vinegar pei of Zhenjiang aromatic vinegar. K. europaeus had higher GC content and larger genome than A. pasteurianus. Functional annotation showed that the number and types of the genes involved in carbohydrate and amino acid metabolism varied greatly between A. pasteurianus and K. europaeus, and the number of carbohydrate-active enzymes was higer in K. europaeus. The functionally differential genes in K. europaeus compared with A. pasteurianus were mainly involved in the pentose phosphate pathway, fatty acid biosynthesis, and fructose and mannose metabolism. The verification experiment showed that K. europaeus increased the conversion rate of alcohol by producing more alcohol dehydrogenase, acetaldehyde dehydrogenase, and ATP and changing the fatty acid composition of the cell membrane. [Conclusion] This study revealed the genetic differences between A. pasteurianus and K. europaeus in vinegar pei. K. europaeus can improve the intracellular microenvironment to adapt to the high acid environment by massively producing energy and the enzymes involved in ethanol conversion and changing the composition of fatty acids in cell membrane. The results of this study can deepen the understanding of the acid tolerance mechanisms of different acetic acid bacteria.

    参考文献
    [1] GAO L, WU XD, ZHU CL, JIN ZY, WANG W, XIA XL. Metabolic engineering to improve the biomanufacturing efficiency of acetic acid bacteria:advances and prospects[J]. Critical Reviews in Biotechnology, 2020, 40(4):522-538.
    [2] LYNCH KM, ZANNINI E, WILKINSON S, DAENEN L, ARENDT EK. Physiology of acetic acid bacteria and their role in vinegar and fermented beverages[J]. Comprehensive Reviews in Food Science and Food Safety, 2019, 18(3):587-625.
    [3] MALIMAS T, THI LAN VU H, MURAMATSU Y, YUKPHAN P, TANASUPAWAT S, Y AMADA Y. Systematics of acetic acid bacteria[A]//Acetic Acid Bacteria[M]. Boca Raton, FL:CRC Press,[2016]|Series:Food biology series|"A science publishers book.":CRC Press, 2017:3-43.
    [4] ANDRÉS-BARRAO C, SAAD MM, CABELLO FERRETE E, BRAVO D, CHAPPUIS ML, ORTEGA PÉREZ R, JUNIER P, PERRET X, BARJA F. Metaproteomics and ultrastructure characterization of Komagataeibacter spp. involved in high-acid spirit vinegar production[J]. Food Microbiology, 2016, 55:112-122.
    [5] ANDRÉS-BARRAO C, BARJA F. Acetic acid bacteria strategies contributing to acetic acid resistance during oxidative fermentation[A]//Acetic Acid Bacteria[M]. Boca Raton, FL:CRC Press,[2016]|Series:Food biology series|"A science publishers book.":CRC Press, 2017:92-119.
    [6] ZHENG Y, CHANG YG, XIE SK, SONG J, WANG M. Impacts of bioprocess engineering on product formation by Acetobacter pasteurianus[J]. Applied Microbiology and Biotechnology, 2018, 102(6):2535-2541.
    [7] MATSUSHITA K, Toyama H, Adachi O. Respiratory chains and bioenergetics of acetic acid bacteria[J]. Advances in Microbial Physiology, 1994, 36:247-301.
    [8] 周文秀, 田呈明, 游崇娟. 云杉腐烂病菌Cytospora piceae全基因组测序及比较基因组分析[J]. 微生物学报, 2021, 61(10):3128-3148. ZHOU WX, TIAN CM, YOU CJ. Genomic sequencing analysis of Cytospora piceae associated with spruce canker disease and comparative genomic analysis of Cytospora species[J]. Acta Microbiologica Sinica, 2021, 61(10):3128-3148(in Chinese).
    [9] 夏凯, 朱军莉, 梁新乐. 醋酸菌耐酸机理及其群体感应研究新进展[J]. 微生物学报, 2017, 57(3):321-332. XIA K, ZHU JL, LIANG L. Advances in acid resistant mechanism of acetic acid bacteria and related quorum sensing system[J]. Acta Microbiologica Sinica, 2017, 57(3):321-332(in Chinese).
    [10] TRČEK J, JERNEJC K, MATSUSHITA K. The highly tolerant acetic acid bacterium Gluconacetobacter europaeus adapts to the presence of acetic acid by changes in lipid composition, morphological properties and PQQ-dependent ADH expression[J]. Extremophiles, 2007, 11(4):627-635.
    [11] WANG B, SHAO YC, CHEN T, CHEN WP, CHEN FS. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics[J]. Scientific Reports, 2015, 5(1):18330.
    [12] MATSUTANI M, ITO K, AZUMA Y, OGINO H, SHIRAI M, YAKUSHI T, MATSUSHITA K. Adaptive mutation related to cellulose producibility in Komagataeibacter medellinensis (Gluconacetobacter xylinus) NBRC 3288[J]. Applied Microbiology and Biotechnology, 2015, 99(17):7229-7240.
    [13] WANG ZM, LU ZM, SHI JS, XU ZH. Exploring flavour-producing core microbiota in multispecies solid-state fermentation of traditional Chinese vinegar[J]. Scientific Reports, 2016, 6:26818.
    [14] NIE ZQ, ZHENG Y, XIE SK, ZHANG XL, SONG J, XIA ML, WANG M. Unraveling the correlation between microbiota succession and metabolite changes in traditional Shanxi aged vinegar[J]. Scientific Reports, 2017, 7:9240.
    [15] PENG MY, Zhang XJ, Huang T, Zhong XZ, Chai LJ, Lu ZM, Shi JS, Xu ZH. Komagataeibacter europaeus improves community stability and function in solid-state cereal vinegar fermentation ecosystem:Non-abundant species plays important role[J]. Food Research International, 2021, 150:110815.
    [16] LANE DL. 16S/23S rRNA sequencing[A]//Stackebrandt ER, Goodfellow M. Nucleic acid techniques in bacterial systematics[M]. Chichester:Wiley, 1991:115-175.
    [17] KUMAR S, STECHER G, TAMURA K. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7):1870-1874.
    [18] PARKS DH, IMELFORT M, SKENNERTON CT, HUGENHOLTZ P, TYSON GW. CheckM:assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes[J]. Genome Research, 2015, 25(7):1043-1055.
    [19] SEEMANN T. Prokka:rapid prokaryotic genome annotation[J]. Bioinformatics, 2014, 30(14):2068-2069.
    [20] TATUSOV RL, FEDOROVA ND, JACKSON JD, JACOBS AR, KIRYUTIN B, KOONIN EV, KRYLOV DM, MAZUMDER R, MEKHEDOV SL, NIKOLSKAYA AN, RAO BS, SMIRNOV S, SVERDLOV AV, VASUDEVAN S, WOLF YI, YIN JJ, NATALE DA. The COG database:an updated version includes eukaryotes[J]. BMC Bioinformatics, 2003, 4:41.
    [21] ALTSCHUL SF, GISH W, MILLER W, MYERS EW, LIPMAN DJ. Basic local alignment search tool[J]. Journal of Molecular Biology, 1990, 215(3):403-410.
    [22] EMMS DM, KELLY S. OrthoFinder:phylogenetic orthology inference for comparative genomics[J]. Genome Biology, 2019, 20(1):238.
    [23] LI L, STOECKERT CJ Jr, ROOS DS. OrthoMCL:identification of ortholog groups for eukaryotic genomes[J]. Genome Research, 2003, 13(9):2178-2189.
    [24] KATOH K, MISAWA K, KUMA KI, MIYATA T. MAFFT:a novel method for rapid multiple sequence alignment based on fast Fourier transform[J]. Nucleic Acids Research, 2002, 30(14):3059-3066.
    [25] STAMATAKIS A. RAxML version 8:a tool for phylogenetic analysis and post-analysis of large phylogenies[J]. Bioinformatics, 2014, 30(9):1312-1313.
    [26] PAGE AJ, CUMMINS CA, HUNT M, WONG VK, REUTER S, HOLDEN MTG, FOOKES M, FALUSH D, KEANE JA, PARKHILL J. Roary:rapid large-scale prokaryote pan genome analysis[J]. Bioinformatics, 2015, 31(22):3691-3693.
    [27] DRULA E, GARRON ML, DOGAN S, LOMBARD V, HENRISSAT B, TERRAPON N. The carbohydrate- active enzyme database:functions and literature[J]. Nucleic Acids Research, 2022, 50(D1):D571-D577.
    [28] FINN RD, CLEMENTS J, EDDY SR. HMMER web server:interactive sequence similarity searching[J]. Nucleic Acids Research, 2011, 39(suppl_2):W29-W37.
    [29] 史伟, 高玲, 夏小乐. 乙酸胁迫下巴氏醋酸杆菌发酵过程中微环境水平的应答分析[J]. 食品与发酵工业, 2019, 45(11):14-20. SHI W, GAO L, XIA XL. Response of Acetobacter pasteurianus during fermentation under acetic acid stress at microenvironment level[J]. Food and Fermentation Industries, 2019, 45(11):14-20(in Chinese).
    [30] 亓正良, 杨海麟, 夏小乐, 王武, 冷云伟, 余晓斌, 权武. 巴氏醋酸杆菌对发酵中醋酸胁迫的生理应答[J]. 微生物学报, 2014, 54(3):299-308. QI ZL, YANG HL, XIA O, WANG W, LENG YW, YU XB, QUAN W. Physiological response to acetic acid stress of Acetobacter pasteuranus during vinegar fermentation[J]. Acta Microbiologica Sinica, 2014, 54(3):299-308(in Chinese).
    [31] LOVE MI, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12):550.
    [32] YU GC, WANG LG, HAN YY, HE QY. clusterProfiler:an R package for comparing biological themes among gene clusters[J]. Omics:a Journal of Integrative Biology, 2012, 16(5):284-287.
    [33] HAN CC, XIA K, YANG JQ, ZHANG H, DeLISA MP, LIANG XL. Investigation of lipid profile in Acetobacter pasteurianus Ab3 against acetic acid stress during vinegar production[J]. Extremophiles, 2020, 24(6):909-922.
    [34] PENG MY, LU ZM, ZHANG XJ, HUANG T, DENG YJ, CHAI LJ, SHI JS, XU ZH. Distinct co-occurrence patterns and driving forces of abundant and rare bacterial communities in the multispecies solid-state fermentation process of cereal vinegar[J]. Systems Microbiology and Biomanufacturing, 2022, 2(2):317-330.
    [35] CHEN MY, TENG WK, ZHAO L, HU CX, ZHOU YK, HAN BP, SONG LR, SHU WS. Comparative genomics reveals insights into cyanobacterial evolution and habitat adaptation[J]. The ISME Journal, 2021, 15(1):211-227.
    [36] LI ZZ, SONG Q, WANG MM, REN JL, LIU SL, ZHAO SC. Comparative genomics analysis of Pediococcus acidilactici species[J]. Journal of Microbiology, 2021, 59(6):573-583.
    [37] ZHANG DC, ZHU ZL, LI YJ, LI XD, GUAN ZY, ZHENG JS. Comparative genomics of Exiguobacterium reveals what makes a cosmopolitan bacterium[J]. mSystems, 2021, 6(4):e00383-21.
    [38] HUANG WC, LIU Y, ZHANG XX, ZHANG CJ, ZOU DY, ZHENG SL, XU W, LUO ZH, LIU FH, LI M. Comparative genomic analysis reveals metabolic flexibility of Woesearchaeota[J]. Nature Communications, 2021, 12:5281.
    [39] KARCAGI I, DRASKOVITS G, UMENHOFFER K, FEKETE G, KOVÁCS K, MÉHI O, BALIKÓ G, SZAPPANOS B, GYÖRFY Z, FEHÉR T, BOGOS B, BLATTNER FR, PÁL C, PÓSFAI G, PAPP B. Indispensability of horizontally transferred genes and its impact on bacterial genome streamlining[J]. Molecular Biology and Evolution, 2016, 33(5):1257-1269.
    [40] LI YJ, YAN PF, LEI QY, LI BY, SUN Y, LI SF, LEI H, XIE N. Metabolic adaptability shifts of cell membrane fatty acids of Komagataeibacter hansenii HDM1-3 improve acid stress resistance and survival in acidic environments[J]. Journal of Industrial Microbiology and Biotechnology, 2019, 46(11):1491-1503.
    [41] LIAO BY, YE XC, CHEN X, ZHOU YJ, CHENG L, ZHOU XD, REN B. The two-component signal transduction system and its regulation in Candida albicans[J]. Virulence, 2021, 12(1):1884-1899.
    [42] 安晓娜, 李伟程, 于洁, 潘琳, 莫蓝馨, 姚彩青, 张和平. 比较基因组学分析不同来源罗伊氏乳杆菌基因多样性及生境适应性[J]. 微生物学报, 2020, 60(5):875-886. AN XN, LI WC, YU J, PAN L, MO LX, YAO CQ, ZHANG HP. Comparative genomics analysis of genetic diversity and habitat adaptability of Lactobacillus reuteri from different sources[J]. Acta Microbiologica Sinica, 2020, 60(5):875-886(in Chinese).
    [43] SÜTZL L, LAURENT CVFP, ABRERA AT, SCHÜTZ G, LUDWIG R, HALTRICH D. Multiplicity of enzymatic functions in the CAZy AA3 family[J]. Applied Microbiology and Biotechnology, 2018, 102(6):2477-2492.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

彭铭烨,黄婷,张晓娟,柴丽娟,陆震鸣,史劲松,许正宏. 比较基因组学解析谷物醋醋醅中巴氏醋杆菌和欧洲驹形杆菌的功能差异[J]. 微生物学报, 2023, 63(2): 638-655

复制
分享
文章指标
  • 点击次数:405
  • 下载次数: 1069
  • HTML阅读次数: 1034
  • 引用次数: 0
历史
  • 收稿日期:2022-06-01
  • 录用日期:2022-07-25
  • 在线发布日期: 2023-02-21
  • 出版日期: 2023-02-04
文章二维码