多位点序列和比较基因组学分析对盐单胞菌科菌株JSM 104105的系统发育学研究
作者:
基金项目:

国家自然科学基金(31460004,31360062);湖南省研究生科研创新项目(CX20211062)


Phylogenetics of Halomonadaceae strain JSM 104105 based on multilocus sequence analysis and comparative genomics analysis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [61]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】为了精准地判定产铁载体嗜盐新菌株JSM 104105在盐单胞菌科(Halomonadaceae)[t1] 中的系统发育地位。【方法】采用基于16S rRNA基因、DNA促旋酶B亚基基因(DNA gyrase B subunit gene, gyrB)和核糖核酸聚合酶σ因子RpoD基因(RNA polymerase sigma factor RpoD gene, rpoD)序列的多位点序列分析方法(multilocus sequence analysis, MLSA),对菌株JSM 104105的系统发育地位进行初步分析;采用比较基因组学分析(comparative genomics analysis),分析该菌株与其系统发育关系密切的典型菌株之间的GC含量、平均核苷酸一致性(average nucleotide identity, ANI)和数字DNA-DNA杂交值(digital DNA-DNA hybridization, dDDH),并进行基因组系统发育学分析(phylogenomic analysis),更准确地判定菌株JSM 104105在盐单胞菌科中的系统发育地位。【结果】MLSA分析结果表明,无论是单基因序列分析,还是多基因串联序列分析,对盐单胞菌科各分类单元以及菌株JSM 104105的系统发育地位都能提供较为一致的结果。分析表明,菌株JSM 104105归属于盐单胞菌科盐单胞菌属(Halomonas),与该属的Halomonas gudaonensisHalomonas azerbaijanicaHalomonas lysinitropha的系统发育关系较密切,它们在系统进化树上形成稳定亚簇(subcluster),其中菌株JSM 104105占据稳定的独立进化分支。尽管它们之间的16S rRNA基因序列相似性较高,为97.3%-98.9%,但菌株JSM 104105很难归属于其中任何已知物种。比较基因组学分析结果确认了这一判断。菌株JSM 104105与系统发育关系密切的H. gudaonensis CGMCC 1.16133TH. azerbaijanica TBZ202TH. lysinitropha 3(2)T的ANI值(78.9%-91.6%)和dDDH值(22.1%-43.7%),均显著低于界定原核生物物种的阈值(ANI,95%-96%;dDDH≥70%)。基因组系统发育分析结果表明,菌株JSM 104105明确构成盐单胞菌属独立的亚分支(subclade)。【结论】从分子系统发育学视角精准地判定产铁载体嗜盐细菌JSM 104105归属于盐单胞菌科盐单胞菌属,与该属的已知物种H. gudaonensisH. azerbaijanicaH. lysinitropha的系统发育关系最密切,但不能归属于该属的已知种,应该代表了一个新的基因种(genospecies)。

    Abstract:

    [Objective] To investigate the phylogenetic position of the siderophore-producing halophilic bacterium JSM 104105 in the family Halomonadaceae. [Methods] Molecular phylogenetic analysis of strain JSM 104105 was performed by means of multilocus sequence analysis (MLSA) based on 3 housekeeping genes, i.e., 16S rRNA gene, DNA gyrase B subunit gene (gyrB) and RNA polymerase sigma factor RpoD gene (rpoD), and then its exact systematic position was investigated by comparative genomics analysis based on whole-genome sequences, including comparisons of G+C content, average nucleotide identity (ANI), and digital DNA-DNA hybridization (dDDH) values, and phylogenomic analysis. [Results] The MLSA results showed that the data both from single-gene (16S rRNA, gyrB, or rpoD) sequence comparisons and concatenated 16S rRNA-gyrB-rpoD sequence comparisons were consistent, and could indicate the phylogeny of strain JSM 104105 and related taxa of Halomonadaceae, and that strain JSM 104105 belonged to the genus Halomonas, being in closestly genetic relationship with Halomonas gudaonensis CGMCC 1.16133T (16S rRNA gene similarity, 98.9%), Halomonas azerbaijanica TBZ202T (98.6%) and Halomonas lysinitropha 3(2)T (97.3%), and strain JSM 104105 formed a coherent branch in the phylogenetic trees which were generated based on either single-gene sequence or concatenated-gene sequence comparisons. MLSA data also suggested that strain JSM 104105 could represent a different phylogenic subline separated from recognized Halomonas species. The results of comparative genomics analysis supported the conclusion from MLSA data. Either ANI (78.9%-91.6%) or dDDH values (22.1%-43.7%) were all well below the standard criteria (ANI, 95%-96%; dDDH≥70%) for delineation of prokaryotic species. The results of phylogenomic analysis also showed that strain JSM 104105 clearly represented an independent subclade in Halomonas. [Conclusion] From the perspective of molecular phylogeny, the combination of MLSA and comparative genomics analysis demonstrated definitely that strain JSM 104105 belongs to Halomonas, being phylogenetically closely related to H. gudaonensis, H. azerbaijanica and H. lysinitropha, and that strain JSM 104105 cannot be assigned to any recognized species but represents a novel genospecies of the genus Halomonas.

    参考文献
    [1] STACKEBRANDT E, GOEBEL BM. Taxonomic note:a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology[J]. International Journal of Systematic and Evolutionary Microbiology, 1994, 44(4):846-849.
    [2] ACINAS SG, MARCELINO LA, KLEPAC-CERAJ V, POLZ MF. Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons[J]. Journal of Bacteriology, 2004, 186(9):2629-2635.
    [3] CILIA V, LAFAY B, CHRISTEN R. Sequence heterogeneities among 16S ribosomal RNA sequences, and their effect on phylogenetic analyses at the species level[J]. Molecular Biology and Evolution, 1996, 13(3):451-461.
    [4] ANDERSON AS, WELLINGTON EM. The taxonomy of Streptomyces and related Genera[J]. International Journal of Systematic and Evolutionary Microbiology, 2001, 51(3):797-814.
    [5] SUN DL, JIANG X, WU QL, ZHOU NY. Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity[J]. Applied and Environmental Microbiology, 2013, 79(19):5962-5969.
    [6] STACKEBRANDT E, FREDERIKSEN W, GARRITY GM, GRIMONT PAD, KÄMPFER P, MAIDEN MCJ, NESME X, ROSSELLÓ-MORA R, SWINGS J, TRÜPER HG, VAUTERIN L, WARD AC, WHITMAN WB. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology[J]. International Journal of Systematic and Evolutionary Microbiology, 2002, 52(3):1043-1047.
    [7] DEVULDER G, de MONTCLOS MP, FLANDROIS JP. A multigene approach to phylogenetic analysis using the genus Mycobacterium as a model[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(Pt 1):293-302.
    [8] GLAESER SP, Kämpfer P. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy[J]. Systematic and Applied Microbiology, 2015, 38(4):237-245.
    [9] ZEIGLER DR. Gene sequences useful for predicting relatedness of whole genomes in bacteria[J]. International Journal of Systematic and Evolutionary Microbiology, 2003, 53(Pt 6):1893-1900.
    [10] ARAHAL DR, VENTOSA A. The family Halomonadaceae[AJ]//. Dworkin, S M, Falkow E. Rosenberg KH, Schleifer Stackebrandt E. The Prokaryotes[M]. 3rd ed. New York:Springer, 2006, 6:811-835.
    [11] MARTENS M, DAWYNDT P, COOPMAN R, GILLIS M, de VOS P, WILLEMS A. Advantages of multilocus sequence analysis for taxonomic studies:a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium)[J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(Pt 1):200-214.
    [12] TINDALL BJ, ROSSELLÓ-MÓRA R, BUSSE HJ, LUDWIG W, KÄMPFER P. Notes on the characterization of prokaryote strains for taxonomic purposes[J]. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(1):249-266.
    [13] de la HABA RR, MÁRQUEZ MC, PAPKE RT, VENTOSA A. Multilocus sequence analysis of the family Halomonadaceae[J]. International Journal of Systematic and Evolutionary Microbiology, 2012, 62(Pt_3):520-538.
    [14] MAIDEN MCJ, van RENSBURG MJJ, BRAY JE, EARLE SG, FORD SA, JOLLEY KA, McCARTHY ND. MLST revisited:the gene-by-gene approach to bacterial genomics[J]. Nature Reviews Microbiology, 2013, 11(10):728-736.
    [15] FANG YJ, WANG YL, LIU ZD, DAI H, CAI HY, LI ZP, DU ZJ, WANG X, JING HQ, WEI Q, KAN B, WANG DC. Multilocus sequence analysis, a rapid and accurate tool for taxonomic classification, evolutionary relationship determination, and population biology studies of the genus Shewanella[J]. Applied and Environmental Microbiology, 2019, 85(11):e03126-e03118.
    [16] WAYNE LG, MOORE WEC, STACKEBRANDT E, KANDLER O, COLWELL RR, KRICHEVSKY MI, TRUPER HG, MURRAY RGE, GRIMONT PAD, BRENNER DJ, STARR MP, MOORE LH. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics[J]. International Journal of Systematic and Evolutionary Microbiology, 1987, 37(4):463-464.
    [17] ROSSELLÓ-MORA R. DNA-DNA reassociation methods applied to microbial taxonomy and their critical evaluation[A]//Molecular Identification, Systematics, and Population Structure of Prokaryotes[M]. Berlin, Heidelberg:Springer Berlin Heidelberg, 2006:23-50.
    [18] 刘志恒, 王剑, 张立新. 基因组时代的放线菌系统学及其研究进展[J]. 微生物学报, 2011, 51(2):141-153. LIU ZH, WANG J, ZHANG LX. Advances in actinobacterial systematics in genomic era[J]. Acta Microbiologica Sinica, 2011, 51(2):141-153(in Chinese).
    [19] RICHTER M, ROSSELLÓ-MÓRA R. Shifting the genomic gold standard for the prokaryotic species definition[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(45):19126-19131.
    [20] 陈奇辉, 刘祝祥, 彭清忠, 黄苛, 贺建武, 张丽, 李文均, 陈义光. 小溪自然保护区非盐环境土壤中嗜盐和耐盐菌多样性[J]. 微生物学报, 2010, 50(11):1452-1459. CHEN QH, LIU ZX, PENG QZ, HUANG N, HE JW, ZHANG L, LI WJ, CHEN YG. Diversity of halophilic and halotolerant bacteria isolated from non-saline soil collected from Xiaoxi National Natural Reserve, Hunan Province[J]. Acta Microbiologica Sinica, 2010, 50(11):1452-1459(in Chinese).
    [21] CHEN YG, ZHANG YQ, CHEN QH, KLENK HP, HE JW, TANG SK, CUI XL, LI WJ. Bacillus xiaoxiensis sp. nov., a slightly halophilic bacterium isolated from non-saline forest soil[J]. International Journal of Systematic and Evolutionary Microbiology, 2011, 61(9):2095-2100.
    [22] WU QL, CHEN JH, DENG LY, LIU ZX, HE JW, LIU ZX, YANG LL, TANG SK, CHEN YG. Sediminibacillus terrae sp. nov., a moderate halophile isolated from non-saline farm soil[J]. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(2):1139-1144.
    [23] CUI XL, MAO PH, ZENG M, LI WJ, ZHANG LP, XU LH, JIANG CL. Streptimonospora Salina Gen. nov., sp. nov., a new member of the family Nocardiopsaceae[J]. International Journal of Systematic and Evolutionary Microbiology, 2001, 51(2):357-363.
    [24] BLATTNER FR, PLUNKETT G 3rd, BLOCH CA, PERNA NT, BURLAND V, RILEY M, COLLADO-VIDES J, GLASNER JD, RODE CK, MAYHEW GF, GREGOR J, DAVIS NW, KIRKPATRICK HA, GOEDEN MA, ROSE DJ, MAU B, SHAO Y. The complete genome sequence of Escherichia coli K-12[J]. Science, 1997, 277(5331):1453-1462.
    [25] RILEY M, ABE T, ARNAUD MB, BERLYN MKB, BLATTNER FR, CHAUDHURI RR, GLASNER JD, HORIUCHI T, KESELER IM, KOSUGE T, MORI H, PERNA NT, PLUNKETT G, RUDD KE, SERRES MH, THOMAS GH, THOMSON NR, WISHART D, WANNER BL. Escherichia coli K-12:a cooperatively developed annotation snapshot-2005[J]. Nucleic Acids Research, 2006, 34(1):1-9.
    [26] WINGETT SW, ANDREWS S. FastQ Screen:a tool for multi-genome mapping and quality control[J]. F1000Research, 2018, 7:1338.
    [27] BOLGER AM, LOHSE M, USADEL B. Trimmomatic:a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15):2114-2120.
    [28] LUO RB, LIU BH, XIE YL, LI ZY, HUANG WH, YUAN JY, HE GZ, CHEN YX, PAN Q, LIU YJ, TANG JB, WU GX, ZHANG H, SHI YJ, LIU Y, YU C, WANG B, LU Y, HAN CL, CHEUNG DW, et al. SOAPdenovo2:an empirically improved memory-efficient short-read de novo assembler[J]. GigaScience, 2012, 1(1):18.
    [29] YOON SH, HA SM, KWON S, LIM J, KIM Y, SEO H, CHUN J. Introducing EzBioCloud:a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies[J]. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(5):1613-1617.
    [30] KUSHWAHA B, JADHAV I, JADHAV K. Halomonas sambharensis sp. nov, a moderately halophilic bacterium isolated from the saltern crystallizer ponds of the sambhar salt lake in India[J]. Current Microbiology, 2020, 77(6):1125-1134.
    [31] TANIZAWA Y, FUJISAWA T, NAKAMURA Y. DFAST:a flexible prokaryotic genome annotation pipeline for faster genome publication[J]. Bioinformatics, 2018, 34(6):1037-1039.
    [32] LAGESEN K, HALLIN P, RØDLAND EA, STÆRFELDT HH, ROGNES T, USSERY DW. RNAmmer:consistent and rapid annotation of ribosomal RNA genes[J]. Nucleic Acids Research, 2007, 35(9):3100-3108.
    [33] THOMPSON JD, GIBSON TJ, PLEWNIAK F, JEANMOUGIN F, HIGGINS DG. The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Research, 1997, 25(24):4876-4882.
    [34] EDGAR RC. MUSCLE:multiple sequence alignment with high accuracy and high throughput[J]. Nucleic Acids Research, 2004, 32(5):1792-1797.
    [35] WILGENBUSCH JC, SWOFFORD D. Inferring evolutionary trees with PAUP[J]. Current Protocols in Bioinformatics, 2003, Chapter 6:Unit 6.4.
    [36] KIMURA M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences[J]. Journal of Molecular Evolution, 1980, 16(2):111-120.
    [37] KUMAR S, STECHER G, TAMURA K. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7):1870-1874.
    [38] SAITOU N, NEI M. The neighbor-joining method:a new method for reconstructing phylogenetic trees[J]. Molecular Biology and Evolution, 1987, 4(4):406-425.
    [39] FELSENSTEIN J. Confidence limits on phylogenies:an approach using the bootstrap[J]. Evolution; International Journal of Organic Evolution, 1985, 39(4):783-791.
    [40] CHAN PP, LIN BY, MAK AJ, LOWE TM. tRNAscan-SE 2.0:improved detection and functional classification of transfer RNA genes[J]. Nucleic Acids Research, 2021, 49(16):9077-9096.
    [41] LEE I, KIM YO, PARK SC, CHUN J. OrthoANI:an improved algorithm and software for calculating average nucleotide identity[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(2):1100-1103.
    [42] YOON SH, HA SM, LIM J, KWON S, CHUN J. A large-scale evaluation of algorithms to calculate average nucleotide identity[J]. Antonie Van Leeuwenhoek, 2017, 110(10):1281-1286.
    [43] MEIER-KOLTHOFF JP, CARBASSE JS, PEINADO-OLARTE RL, GÖKER M. TYGS and LPSN:a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes[J]. Nucleic Acids Research, 2022, 50(D1):D801-D807.
    [44] MEIER-KOLTHOFF JP, GÖKER M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy[J]. Nature Communications, 2019, 10:2182.
    [45] ONDOV BD, TREANGEN TJ, MELSTED P, MALLONEE AB, BERGMAN NH, KOREN S, PHILLIPPY AM. Mash:fast genome and metagenome distance estimation using MinHash[J]. Genome Biology, 2016, 17(1):132.
    [46] CAMACHO C, COULOURIS G, AVAGYAN V, MA N, PAPADOPOULOS J, BEALER K, MADDEN TL. BLAST+:architecture and applications[J]. BMC Bioinformatics, 2009, 10:421.
    [47] MEIER-KOLTHOFF JP, AUCH AF, KLENK HP, GÖKER M. Genome sequence-based species delimitation with confidence intervals and improved distance functions[J]. BMC Bioinformatics, 2013, 14:60.
    [48] MEIER-KOLTHOFF JP, HAHNKE RL, PETERSEN J, SCHEUNER C, MICHAEL V, FIEBIG A, ROHDE C, ROHDE M, FARTMANN B, GOODWIN LA, CHERTKOV O, REDDY T, PATI A, IVANOVA NN, MARKOWITZ V, KYRPIDES NC, WOYKE T, GÖKER M, KLENK HP. Complete genome sequence of DSM 30083^T, the type strain (U5/41^T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy[J].Standards in Genomic Sciences, 2014, 9(1):1-19.
    [49] LEFORT V, DESPER R, GASCUEL O. FastME 2.0:a comprehensive, accurate, and fast distance-based phylogeny inference program[J]. Molecular Biology and Evolution, 2015, 32(10):2798-2800.
    [50] KAZEMI E, TARHRIZ V, AMOOZEGAR MA, HEJAZI MS. Halomonas azerbaijanica sp. nov., a halophilic bacterium isolated from Urmia Lake after the 2015 drought[J]. International Journal of Systematic and Evolutionary Microbiology, 2021, 71(1):[l6] 004578.
    [51] RAMEZANI M, POURMOHYADINI M, NIKOU MM, MAKZUM S, SCHUMANN P, CLERMONT D, CRISCUOLO A, AMOOZEGAR MA, KÄMPFER P, SPRÖER C. Halomonas lysinitropha sp. nov., a novel halophilic bacterium isolated from a hypersaline wetland[J]. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(12):6098-6105.
    [52] GONZALEZ-DOMENECH CM, MARTINEZ-CHECA F, QUESADA E, BEJAR V. Halomonas cerina sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium[J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(4):803-809.
    [53] LI XG, GAN LZ, HU MY, WANG ST, TIAN YQ, SHI B. Halomonas pellis sp. nov., a moderately halophilic bacterium isolated from wetsalted hides[J]. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(10):5417-5424.
    [54] BOLTYANSKAYA YV, KEVBRIN VV, LYSENKO AM, KOLGANOVA TV, TOUROVA TP, OSIPOV GA, ZHILINA TN. Halomonas mongoliensis sp. nov. and Halomonas kenyensis sp. nov, new haloalkaliphilic denitrifiers capable of N2O reduction, isolated from soda lakes[J]. Microbiology, 2007, 76(6):739-747.
    [55] GAN LZ, LONG XF, ZHANG HM, HOU YY, TIAN JW, ZHANG YQ, TIAN YQ. Halomonas saliphila sp. nov., a moderately halophilic bacterium isolated from a saline soil[J]. International Journal of Systematic and Evolutionary Microbiology, 2018, 68(4):1153-1159.
    [56] GARCÍA MT, MELLADO E, OSTOS JC, VENTOSA A. Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds[J]. International Journal of Systematic and Evolutionary Microbiology, 2004, 54(5):1723-1728.
    [57] WANG YN, CAI H, YU SL, WANG ZY, LIU J, WU XL. Halomonas gudaonensis sp. nov., isolated from a saline soil contaminated by crude oil[J]. International Journal of Systematic and Evolutionary Microbiology, 2007, 57(5):911-915.
    [58] KIM M, OH HS, PARK SC, CHUN J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt 2):346-351.
    [59] WU DY, HUGENHOLTZ P, MAVROMATIS K, PUKALL R, DALIN E, IVANOVA NN, KUNIN V, GOODWIN L, WU M, TINDALL BJ, HOOPER SD, PATI A, LYKIDIS A, SPRING S, ANDERSON IJ, D'HAESELEER P, ZEMLA A, SINGER M, LAPIDUS A, NOLAN M, et al. A phylogeny-driven genomic encyclopaedia of bacteria and Archaea[J]. Nature, 2009, 462(7276):1056-1060.
    [60] WHITMAN WB. Genome sequences as the type material for taxonomic descriptions of prokaryotes[J]. Systematic and Applied Microbiology, 2015, 38(4):217-222.
    [61] HUGENHOLTZ P, CHUVOCHINA M, OREN A, PARKS DH, SOO RM. Prokaryotic taxonomy and nomenclature in the age of big sequence data[J]. The ISME Journal, 2021, 15(7):1879-1892.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈锦华,刘细寒,邓丽颖,冯玉周,刘祝祥,陈义光. 多位点序列和比较基因组学分析对盐单胞菌科菌株JSM 104105的系统发育学研究[J]. 微生物学报, 2023, 63(2): 683-699

复制
分享
文章指标
  • 点击次数:278
  • 下载次数: 1017
  • HTML阅读次数: 842
  • 引用次数: 0
历史
  • 收稿日期:2022-06-08
  • 录用日期:2022-07-12
  • 在线发布日期: 2023-02-21
  • 出版日期: 2023-02-04
文章二维码