黄河滩地和稻田土中铁还原菌、不产氧光合细菌分布机制
作者:
基金项目:

河南省高等学校重点科研项目(21A610003);河南工学院博士基金项目(9001/KQ1811);河南省科技攻关项目(202102210253,212102310079)


Distribution of ferric reducing bacteria and anoxygenic phototrophic bacteria in the Yellow River beach and paddy soil
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [46]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【目的】探讨沿黄流域土壤中铁还原菌(ferric reducing bacteria, FeRB)、不产氧光合细菌(anoxygenic phototrophic bacteria, AnPB)的分布机制。【方法】以沿黄流域(原阳段)为研究对象,采集黄河滩地和稻田土样,利用16S rRNA基因高通量测序和实时荧光定量分析技术,结合统计学分析,揭示FeRB、AnPB菌群结构、丰度和主要环境影响因子。【结果】二者中的优势FeRB在科(属)水平为Hydrogenophilaceae (Thiobacillus)、Bacillaceae (Bacillus)、ClostridiaceaeRhodobactereace (Rhodobacter)、Geobacteraceae (Geobacter),优势AnPB为Rhodobactereace (Rhodobacter)、Chloroflexaceae (Chloronema)、Acetobacteraceae (Roseomonas)。AnPB中Rhodobacteraceae与FeRB中BacillaceaeClostridiaceae的相对丰度负相关;AnPB中SphingomonadaceaeHydrogenophilaceaeClostridiaceae的相对丰度亦负相关。土壤硝酸盐氮(NO3--N)与Rhodobactereace相对丰度负相关,与Geobacteraceae相对丰度正相关。二价铁(Fe2+)对FeRB、AnPB菌群组成的差异分别可解释13.5%、41.8%,pH对FeRB、AnPB菌群组成的差异分别可解释65.7%、42.8%。黄河滩地总细菌(total bacteria, BAC)、地(热)杆菌[Geo(thermo)bacter,GEO]、光合紫细菌(phototrophic purple bacteria, PPB)的拷贝数分别为2.52 (±3.43)×109 、5.21 (±7.58)×107、2.9 (±3.70)×107 copies/g干土。稻田土中BAC、GEO、PPB拷贝数依次为3.82 (±1.29)×1010、3.05 (±2.44)× 108、4.31 (±0.90)×108 copies/g干土。0-1 cm土层中PPB拷贝数显著高于1-2 cm、2-3cm土层。Fe2+对BAC、GEO、PPB数量分布变异的解释度为81.5%。【结论】土壤类型不同,潜在FeRB、AnPB物种组成不同,GEO、PPB丰度也不同。Fe2+对FeRB、AnPB分布起关键驱动作用。

    Abstract:

    [Objective] To explore the distribution of ferric reducing bacteria (FeRB) and anoxygenic phototrophic bacteria (AnPB) in the soil along the Yellow River. [Methods] Soil samples were collected from the beach and paddy fields at the Yuanyang section of the Yellow River. High-throughput sequencing of 16S rRNA gene and quantitative real-time PCR were combined with statistical analysis to reveal the structure and abundance of FeRB and AnPB and the main environmental factors affecting the bacteria. [Results] The dominant FeRB families (genera) were Hydrogenophilaceae (Thiobacillus), Bacillaceae (Bacillus), Clostridiaceae, Rhodobactereace (Rhodobacter) and Geobacteraceae (Geobacter). The dominant AnPB families (genera) were Rhodobactereace (Rhodobacter), Chloroflexaceae (Chloronema) and Acetobacteraceae (Roseomonas). The relative abundance of Rhodobacteraceae (AnPB) was negatively correlated with that of Bacillaceae and Clostridiaceae (FeRB). The relative abundance of Sphingomonadaceae (AnPB) was negatively correlated with that of Hydrogenophilaceae and Clostridiaceae (FeRB). Soil nitrate nitrogen (NO3--N) was negatively correlated with the relative abundance of Rhodobacteraceae but positively correlated with that of Geobacteraceae. Ferrous ions (Fe2+) explained 13.5% and 41.8% of the community variations of FeRB and AnPB, respectively; pH explained 65.7% and 42.8%, respectively. The number of total bacteria (BAC), Geo(thermo)bacter (GEO) and phototrophic purple bacteria (PPB) in the Yellow River beach was 2.52 (±3.43)×109, 5.21 (±7.58)×107 and 2.9 (±3.70)× 107 copies/g dry soil, respectively, and that in the paddy soil was 3.82 (±1.29)×1010, 3.05 (±2.44)×108 and 4.31 (±0.90)×108 copies/g dry soil, respectively. Moreover, the PPB in the upmost soil layer (0-1 cm) were significantly more than those in the 1-2 cm and 2-3 cm soil layers. Fe2+ explained 81.5% variations in the absolute abundance of BAC, GEO and PPB. [Conclusion] The potential community of FeRB and AnPB and the abundance of GEO and PPB varied between different soil types. Overall, Fe2+ played a key role in shaping the distribution pattern of FeRB and AnPB.

    参考文献
    [1] WANG XG, SUN LR, CHEN ZH, GUO DY, FAN HL, XU XF, SHI ZY, CHEN XN. Light inhibition of carbon mineralization associated with iron redox processes in calcareous paddy soil[J]. Journal of Soils and Sediments, 2020, 20(8):3171-3180.
    [2] Melton ED, Swanner ED, Behrens S, Schmidt C, Kappler A. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle[J]. Nature Reviews Microbiology, 2014, 12(12):797-808.
    [3] Weber KA, Achenbach LA, Coates JD. Microorganisms pumping iron:anaerobic microbial iron oxidation and reduction[J]. Nature Reviews Microbiology, 2006, 4(10):752-764.
    [4] Otte JM, Harter J, Laufer K, Blackwell N, Straub D, Kappler A, Kleindienst S. The distribution of active iron-cycling bacteria in marine and freshwater sediments is decoupled from geochemical gradients[J]. Environmental Microbiology, 2018, 20(7):2483-2499.
    [5] Wang XJ, Yang J, Chen XP, Sun GX, Zhu YG. Phylogenetic diversity of dissimilatory ferric iron reducers in paddy soil of Hunan, South China[J]. Journal of Soils and Sediments, 2009, 9(6):568-577.
    [6] Hori T, Müller A, Igarashi Y, Conrad R, Friedrich MW. Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing[J]. The ISME Journal, 2010, 4(2):267-278.
    [7] Luo D, Meng XT, Zheng NG, Li YY, Yao HY, Chapman SJ. The anaerobic oxidation of methane in paddy soil by ferric iron and nitrate, and the microbial communities involved[J]. Science of the Total Environment, 2021, 788:147773-147783.
    [8] Kantachote D, Nunkaew T, Nitoda T, Kanzaki H. The use of rice straw broth as an appropriate medium to isolate purple nonsulfur bacteria from paddy fields[J]. Electronic Journal of Biotechnology, 2012, 15(6). DOI:10.2225/vol15- issue6-fulltext-8.
    [9] Lovley DR, Phillips EJ. Novel mode of microbial energy metabolism:organic carbon oxidation coupled to dissimilatory reduction of iron or manganese[J]. Applied and Environmental Microbiology, 1988, 54(6):1472-1480.
    [10] Lovley DR, Phillips EJ. Organic matter mineralization with reduction of ferric iron in anaerobic sediments[J]. Applied and Environmental Microbiology, 1986, 51(4):683-689.
    [11] Achtnich C, Schuhmann A, Wind T, Conrad R. Role of interspecies H2 transfer to sulfate and ferric iron-reducing bacteria in acetate consumption in anoxic paddy soil[J]. FEMS Microbiology Ecology, 1995, 16(1):61-69.
    [12] Ge JY, Huang S, Han I, Jaffé PR. Degradation of tetra- and trichloroethylene under iron reducing conditions by Acidimicrobiaceae sp. A6[J]. Environmental Pollution, 2019, 247:248-255.
    [13] 丁帮璟, 李正魁, 朱鸿杰, 陈湜, 覃云斌, 杨建华, 胡优优. 河岸带表层土壤的铁氨氧化(feammox)脱氮机制的探究[J]. 环境科学, 2018, 39(4):1833-1839. Ding BJ, Li ZK, Zhu HJ, Chen S, Qin YB, Yang JH, Hu YY. Insight into the mechanism of feammox in the surface soils of a riparian zone[J]. Environmental Science, 2018, 39(4):1833-1839(in Chinese).
    [14] Ding LJ, An XL, Li S, Zhang GL, Zhu YG. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence[J]. Environmental Science & Technology, 2014, 48(18):10641-10647.
    [15] Feng YZ, Lin XG, Yu YC, Zhu JG. Elevated ground-level O3 changes the diversity of anoxygenic purple phototrophic bacteria in paddy field[J]. Microbial Ecology, 2011, 62(4):789-799.
    [16] Nunkaew T, Kantachote D, Nitoda T, Kanzaki H. Selection of salt tolerant purple nonsulfur bacteria producing 5-aminolevulinic acid (ALA) and reducing methane emissions from microbial rice straw degradation[J]. Applied Soil Ecology, 2015, 86:113-120.
    [17] Wu WF, Swanner ED, Hao LK, Zeitvogel F, Obst M, Pan YX, Kappler A. Characterization of the physiology and cell-mineral interactions of the marine anoxygenic phototrophic Fe(II) oxidizer Rhodovulum iodosum-implications for Precambrian Fe(II) oxidation[J]. FEMS Microbiology Ecology, 2014, 88(3):503-515.
    [18] Jiao YQ, Kappler A, Croal LR, Newman DK. Isolation and characterization of a genetically tractable photoautotrophic Fe(II)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1[J]. Applied and Environmental Microbiology, 2005, 71(8):4487-4496.
    [19] Ehrenreich A, Widdel F. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism[J]. Applied and Environmental Microbiology, 1994, 60(12):4517-4526.
    [20] Heising S, Richter L, Ludwig W, Schink B. Chlorobium ferrooxidans sp. nov, a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a "Geospirillum" sp. strain[J]. Archives of Microbiology, 1999, 172(2):116-124.
    [21] Ha PT, Lindemann SR, Shi L, Dohnalkova AC, Fredrickson JK, Madigan MT, Beyenal H. Syntrophic anaerobic photosynthesis via direct interspecies electron transfer[J]. Nature Communications, 2017, 8:13924-13930.
    [22] Byrne JM, Klueglein N, Pearce C, Rosso KM, Appel E, Kappler A. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria[J]. Science, 2015, 347(6229):1473-1476.
    [23] Berg JS, Michellod D, Pjevac P, Martinez-Perez C, Buckner CRT, Hach PF, Schubert CJ, Milucka J, Kuypers MMM. Intensive cryptic microbial iron cycling in the low iron water column of the meromictic Lake Cadagno[J]. Environmental Microbiology, 2016, 18(12):5288-5302.
    [24] Laufer K, Nordhoff M, Røy H, Schmidt C, Behrens S, Jørgensen BB, Kappler A. Coexistence of microaerophilic, nitrate-reducing, and phototrophic Fe(II) oxidizers and Fe(III) reducers in coastal marine sediment[J]. Applied and Environmental Microbiology, 2015, 82(5):1433-1447.
    [25] Lovley DR, Phillips EJ. Rapid assay for microbially reducible ferric iron in aquatic sediments[J]. Applied and Environmental Microbiology, 1987, 53(7):1536-1540.
    [26] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000. Lu RK. Agricultural Chemical Analysis Method of Soil[M]. China Agriculture Scientech Press, 2000(in Chinese).
    [27] Yang CM, Sun JL, Chen YY, Wu J, Wang YL. Linkage between water soluble organic matter and bacterial community in sediment from a shallow, eutrophic lake, Lake Chaohu, China[J]. Journal of Environmental Sciences, 2020, 98:39-46.
    [28] Li XF, Hou LJ, Liu M, Zheng YL, Yin GY, Lin XB, Cheng L, Li Y, Hu XT. Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland[J]. Environmental Science & Technology, 2015, 49(19):11560-11568.
    [29] Achenbach LA, Carey J, Madigan MT. Photosynthetic and phylogenetic primers for detection of anoxygenic phototrophs in natural environments[J]. Applied and Environmental Microbiology, 2001, 67(7):2922-2926.
    [30] Ding LJ, Su JQ, Xu HJ, Jia ZJ, Zhu YG. Long-term nitrogen fertilization of paddy soil shifts iron-reducing microbial community revealed by RNA-13C-acetate probing coupled with pyrosequencing[J]. The ISME Journal, 2015, 9(3):721-734.
    [31] Ghorbanzadeh N, Lakzian A, Haghnia GH, Karimi AR. Isolation and identification of ferric reducing bacteria and evaluation of their roles in iron availability in two calcareous soils[J]. Eurasian Soil Science, 2014, 47(12):1266-1273.
    [32] Scheid D, Stubner S, Conrad R. Identification of rice root associated nitrate, sulfate and ferric iron reducing bacteria during root decomposition[J]. FEMS Microbiology Ecology, 2004, 50(2):101-110.
    [33] Zhou GW, Yang XR, Sun AQ, Li H, Lassen SB, Zheng BX, Zhu YG. Mobile incubator for iron(III) reduction in the gut of the soil-feeding earthworm Pheretima guillelmi and interaction with denitrification[J]. Environmental Science & Technology, 2019, 53(8):4215-4223.
    [34] Sugio T, Domatsu C, Munakata O, Tano T, Imai K. Role of a ferric ion-reducing system in sulfur oxidation of Thiobacillus ferrooxidans[J]. Applied and Environmental Microbiology, 1985, 49(6):1401-1406.
    [35] Kurosawa H, Maeda K, Yamamoto E, Nakamura K, Amano Y. Growth of Thiobacillus ferrooxidans utilized thiosulfate through the oxidation route with iron recycling[J]. The Journal of General and Applied Microbiology, 1994, 40(6):491-498.
    [36] Huang SF, Chen M, Diao YM, Feng QY, Zeng RJ, Zhou SG. Dissolved organic matter acting as a microbial photosensitizer drives photoelectrotrophic denitrification[J]. Environmental Science & Technology, 2022, 56(7):4632-4641.
    [37] Hao W, Zhang J, Duan R, Liang P, Li M, Qi X, Li QC, Liu PP, Huang X. Organic carbon coupling with sulfur reducer boosts sulfur based denitrification by Thiobacillus denitrificans[J]. Science of the Total Environment, 2020, 748:142445-142452.
    [38] Yu LP, Yuan Y, Tang J, Wang YQ, Zhou SG. Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens[J]. Scientific Reports, 2015, 5:16221-16231.
    [39] Qiao JT, Li XM, Li FB. Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with biochar[J]. Journal of Hazardous Materials, 2018, 344:958-967.
    [40] Clément JC, Shrestha J, Ehrenfeld JG, Jaffé PR. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils[J]. Soil Biology and Biochemistry, 2005, 37(12):2323-2328.
    [41] 刘新, 王芳, 江和龙, 姚宗豹. 太湖梅梁湾沉积物中铁氧化氨作用及其脱氮贡献[J]. 生态环境学报, 2018, 27(8):1481-1487. Liu X, Wang F, Jiang HL, Yao ZB. Anaerobic ammonium oxidation coupled to ferric iron reduction and its contribution to nitrogen loss in the sediment of Meiliang Bay, Lake Taihu[J]. Ecology and Environmental Sciences, 2018, 27(8):1481-1487(in Chinese).
    [42] Yao ZB, Yang L, Song N, Wang CH, Jiang HL. Effect of organic matter derived from algae and macrophyte on anaerobic ammonium oxidation coupled to ferric iron reduction in the sediment of a shallow freshwater lake[J]. Environmental Science and Pollution Research, 2020, 27(21):25899-25907.
    [43] Zhou SL, Sun Y, Li ZX, Huang TL. Characteristics and driving factors of the aerobic denitrifying microbial community in Baiyangdian Lake, Xiong'an new area[J]. Microorganisms, 2020, 8(5):714-728.
    [44] 汪银龙, 冯民权, 董向前. 汾河下游水体nirS型反硝化细菌群落组成与无机氮关系[J]. 环境科学, 2019, 40(8):3596-3603. Wang YL, Feng MQ, Dong XQ. Community composition of nir S-type denitrifying bacteria in the waters of the lower reaches of the Fenhe River and its relationship with inorganic nitrogen[J]. Environmental Science, 2019, 40(8):3596-3603(in Chinese).
    [45] Vieira A, Galinha CF, Oehmen A, Carvalho G. The link between nitrous oxide emissions, microbial community profile and function from three full-scale WWTPs[J]. Science of the Total Environment, 2019, 651:2460-2472.
    [46] Richardson DJ, McEwan AG, Page MD, Jackson JB, Ferguson SJ. The identification of cytochromes involved in the transfer of electrons to the periplasmic NO3- reductase of Rhodobacter capsulatus and resolution of a soluble NO3(-)-reductase:cytochrome-c552 redox complex[J]. European Journal of Biochemistry, 1990, 194(1):263-270.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

田莹莹,王强,赵京,孙向辉,姬燕培. 黄河滩地和稻田土中铁还原菌、不产氧光合细菌分布机制[J]. 微生物学报, 2023, 63(2): 805-820

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-06-28
  • 录用日期:2022-08-18
  • 在线发布日期: 2023-02-21
  • 出版日期: 2023-02-04
文章二维码