解淀粉芽胞杆菌HZ-12中ysnE参与吲哚-3-乙酸合成的代谢途径研究
作者:
基金项目:

武汉市知识创新专项-曙光计划(2022020801020334);湖北省烟草公司科技项目(027Y2020-013)


Metabolic pathways of ysnE involved in indole-3-acetic acid synthesis in Bacillus amyloliquefaciens HZ-12
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    【目的】吲哚-3-乙酸是调控植物生长发育和生理活动的重要激素,吲哚-3-乙酸N-乙酰转移酶YsnE在吲哚-3-乙酸合成中发挥重要作用,本研究拟解析解淀粉芽胞杆菌中YsnE参与吲哚-3-乙酸合成的代谢途径。【方法】通过基因ysnE缺失和强化表达,分析ysnE对吲哚-3-乙酸合成影响,结合吲哚-3-乙酸合成中间物(吲哚丙酮酸、吲哚乙酰胺、色胺和吲哚乙腈)添加和体外酶转化实验,解析ysnE参与吲哚-3-乙酸合成的代谢途径。【结果】明确了YsnE在解淀粉芽胞杆菌HZ-12吲哚-3-乙酸合成中发挥重要作用。发现ysnE缺失菌株中的吲哚丙酮酸、吲哚乙酰胺和吲哚乙腈利用显著降低,揭示了YsnE主要发挥吲哚丙酮酸脱羧酶YclB和吲哚乙酰胺水解酶/腈水解酶/腈水合酶YhcX的功能,并通过参与吲哚丙酮酸、吲哚乙酰胺和吲哚乙腈途径来影响吲哚-3-乙酸合成。【结论】初步揭示了YsnE通过影响吲哚丙酮酸、吲哚乙酰胺和吲哚乙腈途径参与吲哚-3-乙酸合成的代谢机理,为吲哚-3-乙酸合成途径解析和代谢工程育种构建吲哚-3-乙酸高产菌株奠定了基础。

    Abstract:

    [Objective] Indole-3-acetic acid is crucial for plant growth and development and physiological activities. Indole-3-acetic acid N-acetyltransferase YsnE plays an important part in indole-3-acetic acid synthesis. This study aims to analyze the metabolic pathways of YsnE involved in indole-3-acetic acid synthesis of Bacillus amyloliquefaciens. [Methods] Through deletion and overexpression of ysnE, the role of ysnE in indole-3-acetic acid synthesis was elucidated. Combined with the addition of indole-3-acetic acid synthesis intermediates (indole pyruvic acid (IPA), indole-3-acetamide (IAM), tryptamine (TAM), indole-3-acetonitrile (IAN)) and in vitro enzymatic conversion experiments, the metabolic pathways of ysnE involved in indole-3-acetic acid synthesis were clarified. [Results] YsnE played an important role in indole-3-acetic acid synthesis in B. amyloliquefaciens HZ-12. The amount of IPA, IAM, and IAN consumed in ysnE deletion strain was significantly reduced, and YsnE functioned as indolepyruvate decarboxylase YclB, and indoleacetamide hydrolase/nitrilase/nitrile hydratase YhcX, and affected indole-3-acetic acid synthesis by participating in IPA, IAM, and IAN pathways. [Conclusion] YsnE influences the IPA, IAM, and IAN pathways to involve in indole-3-acetic acid synthesis, which lays a foundation for analysis of indole-3-acetic acid synthesis pathway and breeding strains with high yield of indole-3-acetic acid by metabolic engineering.

    参考文献
    [1] Shao JH, Li SQ, Zhang N, Cui XS, Zhou X, Zhang GS, Shen QR, Zhang RF. Analysis and cloning of the synthetic pathway of the phytohormone indole-3-acetic acid in the plant-beneficial Bacillus amyloliquefaciens SQR9[J]. Microbial Cell Factories, 2015, 14(1):130.
    [2] 王家利, 刘冬成, 郭小丽, 张爱民. 生长素合成途径的研究进展[J]. 植物学报, 2012, 47(3):292-301. WANG JL, LIU DC, GUO XL, ZHANG AM. Research advances in auxin biosynthesis[J]. Chinese Bulletin of Botany, 2012, 47(3):292-301(in Chinese).
    [3] 田辉, 王帅, 刘波. 基于游离质粒的木糖诱导型枯草芽孢杆菌转化体系的建立及其应用[J]. 生物技术进展, 2021, 11(6):741-748. TIAN H, WANG S, LIU B. Construction and application of plasmid-based and xylose-induced transformation system of Bacillus subtilis[J]. Current Biotechnology, 2021, 11(6):741-748(in Chinese).
    [4] KHALID A, TAHIR S, ARSHAD M, ZAHIR ZA. Relative efficiency of rhizobacteria for auxin biosynthesis in rhizosphere and non-rhizosphere soils[J]. Soil Research, 2004, 42(8):921.
    [5] KOCHAR M, VAISHNAVI A, UPADHYAY A, SRIVASTAVA S. Bacterial biosynthesis of indole-3-acetic acid:signal messenger service[A]//Molecular Microbial Ecology of the Rhizosphere[M]. Hoboken, NJ, USA:John Wiley & Sons, Inc., 2013:309-325.
    [6] DUCA D, LORV J, PATTEN CL, ROSE D, GLICK BR. Indole-3-acetic acid in plant-microbe interactions[J]. Antonie Van Leeuwenhoek, 2014, 106(1):85-125.
    [7] ROMASI EF, LEE J. Development of indole-3-acetic acid-producing Escherichia coli by functional expression of IpdC, AspC, and Iad1[J]. Journal of Microbiology and Biotechnology, 2013, 23(12):1726-1736.
    [8] SPAEPEN S, VANDERLEYDEN J, REMANS R. Indole-3-acetic acid in microbial and microorganism- plant signaling[J]. FEMS Microbiology Reviews, 2007, 31(4):425-448.
    [9] MCCLERKLIN SA, LEE SG, HARPER CP, NWUMEH R, JEZ JM, KUNKEL BN. Indole-3-acetaldehyde dehydrogenase-dependent auxin synthesis contributes to virulence of Pseudomonas syringae strain DC3000[J]. PLoS Pathogens, 2018, 14(1):e1006811.
    [10] SHAO JH, LI YC, LI ZF, XU ZH, XUN WB, ZHANG N, FENG HC, MIAO YZ, SHEN QR, ZHANG RF. Participating mechanism of a major contributing gene ysnE for auxin biosynthesis in Bacillus amyloliquefaciens SQR9[J]. Journal of Basic Microbiology, 2021, 61(6):569-575.
    [11] GUO DY, KONG SJ, CHU X, LI X, PAN H. De novo biosynthesis of indole-3-acetic acid in engineered Escherichia coli[J]. Journal of Agricultural and Food Chemistry, 2019, 67(29):8186-8190.
    [12] KOCHAR M, UPADHYAY A, SRIVASTAVA S. Indole-3-acetic acid biosynthesis in the biocontrol strain Pseudomonas fluorescens Psd and plant growth regulation by hormone overexpression[J]. Research in Microbiology, 2011, 162(4):426-435.
    [13] CAI DB, ZHU J, ZHU S, LU Y, ZHANG BW, LU K, LI JH, MA X, CHEN SW. Metabolic engineering of main transcription factors in carbon, nitrogen, and phosphorus metabolisms for enhanced production of bacitracin in Bacillus licheniformis[J]. ACS Synthetic Biology, 2019, 8(4):866-875.
    [14] 张清, 朱杉, 崔乃香, 张博闻, 王志, 陈晓斌, 刘军, 李俊辉, 蔡冬波, 杨之帆, 陈守文, 马昕. 能量代谢工程促地衣芽胞杆菌DW2高效合成杆菌肽[J]. 生物工程学报, 2020, 36(6):1126-1137. ZHANG Q, ZHU S, CUI NX, ZHANG BW, WANG Z, CHEN XB, LIU J, LI JH, CAI DB, YANG ZF, CHEN SW, MA X. Enhanced production of bacitracin via energy metabolism engineering in Bacillus licheniformis DW2[J]. Chinese Journal of Biotechnology, 2020, 36(6):1126-1137(in Chinese).
    [15] CAI DB, ZHANG BW, RAO Y, LI LF, ZHU J, LI JH, MA X, CHEN SW. Improving the utilization rate of soybean meal for efficient production of bacitracin and heterologous proteins in the aprA-deficient strain of Bacillus licheniformis[J]. Applied Microbiology and Biotechnology, 2019, 103(12):4789-4799.
    [16] YANG F, LIU N, CHEN YZ, WANG S, LIU J, ZHAO L, MA X, CAI DB, CHEN SW. Rational engineering of cofactor specificity of glutamate dehydrogenase for poly-γ-glutamic acid synthesis in Bacillus licheniformis[J]. Enzyme and Microbial Technology, 2022, 155:109979.
    [17] 赵连真, 张梁, 石贵阳. 谷氨酸棒杆菌l-天冬氨酸α-脱羧酶在大肠杆菌中的表达及酶转化生产β-丙氨酸[J]. 微生物学通报, 2013, 40(12):2161-2170. ZHAO LZ, ZHANG L, SHI GY. Expression of l-aspartate α-decarboxylase from Corynebacterium glutamicum in Escherichia coli and its application in enzymatic synthesis of β-alanine[J]. Microbiology China, 2013, 40(12):2161-2170(in Chinese).
    [18] 晁春艳, 王啸波, 李朝昉. 高效液相色谱法分离植物促生菌中的激素GA、IAA[J]. 化学工程与装备, 2008(8):94-97, 91. CHAO CY, WANG XB, LI CF. Separation of hormones GA and IAA in plant growth-promoting bacteria by high performance liquid chromatography[J]. Chemical Engineering & Equipment, 2008(8):94-97, 91(in Chinese).
    [19] GLICKMANN E, DESSAUX Y. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria[J]. Applied and Environmental Microbiology, 1995, 61(2):793-796.
    [20] WU HX, YANG JH, SHEN PJ, LI QC, WU WB, JIANG XZ, QIN LN, HUANG JZ, CAO X, QI F. High-level production of indole-3-acetic acid in the metabolically engineered Escherichia coli[J]. Journal of Agricultural and Food Chemistry, 2021, 69(6):1916-1924.
    [21] IDRIS EE, IGLESIAS DJ, TALON M, BORRISS R. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42[J]. Molecular Plant-Microbe Interactions:MPMI, 2007, 20(6):619-626.
    [22] KASAHARA H. Current aspects of auxin biosynthesis in plants[J]. Bioscience, Biotechnology, and Biochemistry, 2016, 80(1):34-42.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周慧娟,佘梦林,李孜燕,高林,高加明,蔡冬波,杨之帆,陈守文,马昕. 解淀粉芽胞杆菌HZ-12中ysnE参与吲哚-3-乙酸合成的代谢途径研究[J]. 微生物学报, 2023, 63(2): 845-854

复制
相关视频

分享
文章指标
  • 点击次数:309
  • 下载次数: 966
  • HTML阅读次数: 881
  • 引用次数: 0
历史
  • 收稿日期:2022-07-02
  • 录用日期:2022-08-11
  • 在线发布日期: 2023-02-21
  • 出版日期: 2023-02-04
文章二维码