肠道微生物培养的研究进展及应用
作者:
基金项目:

江西省自然科学基金(20202BAB205003);国家自然科学基金(31772579)


Research progress and application of gut microorganism culture
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [103]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    肠道中栖居着组成复杂、功能多样的微生物群,这些微生物群在宿主免疫、营养吸收、代谢调节等方面发挥着重要作用。随着测序技术的快速发展,肠道微生物研究通过16S rRNA基因测序和宏基因组测序产生了大量的数据,其中许多未组装的序列成为微生物“暗物质”。近年来,不少研究利用多种不同微生物分离培养方法,结合高通量鉴定技术,从人、小鼠、猪肠道中分离了大量的微生物,丰富了菌株资源,为解析微生物“暗物质”以及后续肠道微生物功能和应用研究提供了基础和保障。尽管微生物的可培养性受到多种因素的影响,大部分微生物尚处于“未培养”的状态,但无论是病因研究还是生理和遗传特征的解析都离不开微生物实体资源的获取。肠道微生物的分离培养对微生物研究从关联分析向菌群功能验证、因果机制解析和功能菌株开发的深入研究具有重要意义。本文旨在探讨和综述影响微生物可培养性的因素,总结回顾肠道微生物的培养方法并阐述肠道微生物培养研究的进展,以期为肠道微生物培养研究提供新的视角。

    Abstract:

    The gut harbors the microbiota with complex structure and diverse functions, which plays an important role in host immunity, nutrient absorption, and metabolic regulation. The rapid development of sequencing technologies such as 16S rRNA gene sequencing and metagenomic sequencing has generated massive data of gut microbiota, among which many unassembled sequences are considered as the microbial dark matter. Through the combination of a variety of culture methods and high-throughput sequencing, a large number of microorganisms have been isolated from the guts of human, mouse, and pig in recent years, which has significantly enriched the bacterial strain resources and provided a basis for the analysis of microbial dark matter and the research on the functions and application of gut microbiota. Although the culturability of microorganisms is affected by many factors and most microorganisms are still uncultured, the acquisition of microbial resources is indispensable for the study of etiology and the analysis of physiological and genetic characteristics of bacterial strains. The isolation and culture of gut microorganisms are of great significance for the deep research on gut microbiota from association study to functional verification, causality elucidation, and functional strain development. This article summarized the factors that affect the culturability of microorganisms, introduced the culture methods of gut microorganisms, and reviewed the progress and application of gut microorganism culture, aiming to give new insights into this field.

    参考文献
    [1] ROOKS MG, GARRETT WS. Gut microbiota, metabolites and host immunity[J]. Nature Reviews Immunology, 2016, 16(6):341-352.
    [2] TILG H, ZMORA N, ADOLPH TE, ELINAV E. The intestinal microbiota fuelling metabolic inflammation[J]. Nature Reviews Immunology, 2020, 20(1):40-54.
    [3] OSADCHIY V, MARTIN CR, MAYER EA. The gut-brain axis and the microbiome:mechanisms and clinical implications[J]. Clinical Gastroenterology and Hepatology, 2019, 17(2):322-332.
    [4] LAGIER JC, DUBOURG G, MILLION M, CADORET F, BILEN M, FENOLLAR F, LEVASSEUR A, ROLAIN JM, FOURNIER PE, RAOULT D. Culturing the human microbiota and culturomics[J]. Nature Reviews Microbiology, 2018, 16:540-550.
    [5] HEINTZ-BUSCHART A, WILMES P. Human gut microbiome:function matters[J]. Trends in Microbiology, 2018, 26(7):563-574.
    [6] THOMAS AM, SEGATA N. Multiple levels of the unknown in microbiome research[J]. BMC Biology, 2019, 17(1):48.
    [7] ALMEIDA A, NAYFACH S, BOLAND M, STROZZI F, BERACOCHEA M, SHI ZJ, POLLARD KS, SAKHAROVA E, PARKS DH, HUGENHOLTZ P, SEGATA N, KYRPIDES NC, FINN RD. A unified catalog of 204, 938 reference genomes from the human gut microbiome[J]. Nature Biotechnology, 2021, 39(1):105-114.
    [8] RINKE C, SCHWIENTEK P, SCZYRBA A, IVANOVA NN, ANDERSON IJ, CHENG JF, DARLING A, MALFATTI S, SWAN BK, GIES EA, DODSWORTH JA, HEDLUND BP, TSIAMIS G, SIEVERT SM, LIU WT, EISEN JA, HALLAM SJ, KYRPIDES NC, STEPANAUSKAS R, RUBIN EM, et al. Insights into the phylogeny and coding potential of microbial dark matter[J]. Nature, 2013, 499(7459):431-437.
    [9] PEISL BYL, SCHYMANSKI EL, WILMES P. Dark matter in host-microbiome metabolomics:tackling the unknowns-a review[J]. Analytica Chimica Acta, 2018, 1037:13-27.
    [10] LIN LY, WU QY, SONG J, DU YH, GAO J, SONG YL, WANG W, YANG CY. Revealing the in vivo growth and division patterns of mouse gut bacteria[J]. Science Advances, 2020, 6(36):eabb2531.
    [11] MALLICK H, MA SY, FRANZOSA EA, VATANEN T, MORGAN XC, HUTTENHOWER C. Experimental design and quantitative analysis of microbial community multiomics[J]. Genome Biology, 2017, 18(1):228.
    [12] UGARTE A, VICEDOMINI R, BERNARDES J, CARBONE A. A multi-source domain annotation pipeline for quantitative metagenomic and metatranscriptomic functional profiling[J]. Microbiome, 2018, 6(1):149.
    [13] TRAMONTANO M, ANDREJEV S, PRUTEANU M, KLÜNEMANN M, KUHN M, GALARDINI M, JOUHTEN P, ZELEZNIAK A, ZELLER G, BORK P, TYPAS A, PATIL KR. Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies[J]. Nature Microbiology, 2018, 3(4):514-522.
    [14] STRANDWITZ P, KIM KH, TEREKHOVA D, LIU JK, SHARMA A, LEVERING J, MCDONALD D, DIETRICH D, RAMADHAR TR, LEKBUA A, MROUE N, LISTON C, STEWART EJ, DUBIN MJ, ZENGLER K, KNIGHT R, GILBERT JA, CLARDY J, LEWIS K. GABA-modulating bacteria of the human gut microbiota[J]. Nature Microbiology, 2019, 4(3):396-403.
    [15] LI LY, ABOU-SAMRA E, NING ZB, ZHANG X, MAYNE J, WANG J, CHENG K, WALKER K, STINTZI A, FIGEYS D. An in vitro model maintaining taxon-specific functional activities of the gut microbiome[J]. Nature Communications, 2019, 10(1):4146.
    [16] PPOYET M, GROUSSIN M, GIBBONS SM, AVILA-PACHECO J, JIANG X, KEARNEY SM, PERROTTA AR, BERDY B, ZHAO S, LIEBERMAN TD, SWANSON PK, SMITH M, ROESEMANN S, ALEXANDER JE, RICH SA, LIVNY J, VLAMAKIS H, CLISH C, BULLOCK K, DEIK A, et al. A library of human gut bacterial isolates paired with longitudinal multiomics data enables mechanistic microbiome research[J]. Nature Medicine, 2019, 25(9):1442-1452.
    [17] VILANOVA C, PORCAR M. Are multi-omics enough?[J]. Nature Microbiology, 2016, 1:16101.
    [18] ZOU YQ, XUE WB, LUO GW, DENG ZQ, QIN PP, GUO RJ, SUN HP, XIA Y, LIANG SS, DAI Y, WAN DW, JIANG RR, SU LL, FENG Q, JIE ZY, GUO TK, XIA ZK, LIU C, YU JH, LIN YX, et al. 1520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses[J]. Nature Biotechnology, 2019, 37(2):179-185.
    [19] LAGIER JC, ARMOUGOM F, MILLION M, HUGON P, PAGNIER I, ROBERT C, BITTAR F, FOURNOUS G, GIMENEZ G, MARANINCHI M, TRAPE JF, KOONIN EV, la SCOLA B, RAOULT D. Microbial culturomics:paradigm shift in the human gut microbiome study[J]. Clinical Microbiology and Infection, 2012, 18(12):1185-1193.
    [20] BROWNE HP, FORSTER SC, ANONYE BO, KUMAR N, NEVILLE BA, STARES MD, GOULDING D, LAWLEY TD. Culturing of "unculturable" human microbiota reveals novel taxa and extensive sporulation[J]. Nature, 2016, 533(7604):543-546.
    [21] GOODMAN AL, KALLSTROM G, FAITH JJ, REYES A, MOORE A, DANTAS G, GORDON JI. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(15):6252-6257.
    [22] LAU JT, WHELAN FJ, HERATH I, LEE CH, COLLINS SM, BERCIK P, SURETTE MG. Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling[J]. Genome Medicine, 2016, 8(1):72.
    [23] FORSTER SC, KUMAR N, ANONYE BO, ALMEIDA A, VICIANI E, STARES MD, DUNN M, MKANDAWIRE TT, ZHU AN, SHAO Y, PIKE LJ, LOUIE T, BROWNE HP, MITCHELL AL, NEVILLE BA, FINN RD, LAWLEY TD. A human gut bacterial genome and culture collection for improved metagenomic analyses[J]. Nature Biotechnology, 2019, 37(2):186-192.
    [24] SORBARA MT, LITTMANN ER, FONTANA E, MOODY TU, KOHOUT CE, GJONBALAJ M, EATON V, SEOK R, LEINER IM, PAMER EG. Functional and genomic variation between human-derived isolates of Lachnospiraceae reveals inter-and intra-species diversity[J]. Cell Host & Microbe, 2020, 28(1):134-146.e4.
    [25] STALEY JT, KONOPKA A. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats[J]. Annual Review of Microbiology, 1985, 39:321-346.
    [26] OVERMANN J. Principles of enrichment, isolation, cultivation, and preservation of prokaryotes[J]. The Prokaryotes. 2006, 1:80-136.
    [27] LYNCH MDJ, NEUFELD JD. Ecology and exploration of the rare biosphere[J]. Nature Reviews Microbiology, 2015, 13(4):217-229.
    [28] ZHENG WS, ZHAO SJ, YIN YH, ZHANG HD, NEEDHAM DM, EVANS ED, DAI CL, LU PJ, ALM EJ, WEITZ DA. High-throughput, single-microbe genomics with strain resolution, applied to a human gut microbiome[J]. Science, 2022, 376(6597):eabm1483.
    [29] BARTELME RP, CUSTER JM, DUPONT CL, ESPINOZA JL, TORRALBA M, KHALILI B, CARINI P. Influence of substrate concentration on the culturability of heterotrophic soil microbes isolated by high-throughput dilution-to-extinction cultivation[J]. mSphere, 2020, 5(1):e00024-e00020.
    [30] LENNON JT, JONES SE. Microbial seed banks:the ecological and evolutionary implications of dormancy[J]. Nature Reviews Microbiology, 2011, 9(2):119-130.
    [31] DWORKIN J, SHAH IM. Exit from dormancy in microbial organisms[J]. Nature Reviews Microbiology, 2010, 8(12):890-896.
    [32] IMACHI H, NOBU MK, NAKAHARA N, MORONO Y, OGAWARA M, TAKAKI Y, TAKANO Y, UEMATSU K, IKUTA T, ITO M, MATSUI Y, MIYAZAKI M, MURATA K, SAITO Y, SAKAI S, SONG CH, TASUMI E, YAMANAKA Y, YAMAGUCHI T, KAMAGATA Y, et al. Isolation of an archaeon at the prokaryote-eukaryote interface[J]. Nature, 2020, 577(7791):519-525.
    [33] ZENGLER K, ZARAMELA LS. The social network of microorganisms-how auxotrophies shape complex communities[J]. Nature Reviews Microbiology, 2018, 16(6):383-390.
    [34] GUZMAN JJL, SOUSA DZ, ANGENENT LT. Development of a bioelectrochemical system as a tool to enrich H2-producing syntrophic bacteria[J]. Frontiers in Microbiology, 2019, 10:110.
    [35] STIEB M, SCHINK B. Cultivation of syntrophic anaerobic bacteria in membrane-separated culture devices[J]. FEMS Microbiology Letters, 1987, 45(2):71-76.
    [36] STARR MP, STOLP H, TRÜPER HG, BALOWS A, SCHLEGEL HG. The Prokaryotes[M]. Berlin, Heidelberg:Springer Berlin Heidelberg, 1981.
    [37] 杜梦璇, 姜民志, 刘畅, 刘双江. 肠道微生物菌株资源库的构建与应用开发[J]. 微生物学报, 2021, 61(4):875-890. DU MX, JIANG MZ, LIU C, LIU SJ. Gut microbial BioBanks:construction and applications[J]. Acta Microbiologica Sinica, 2021, 61(4):875-890(in Chinese).
    [38] RETTEDAL EA, GUMPERT H, SOMMER MOA. Cultivation-based multiplex phenotyping of human gut microbiota allows targeted recovery of previously uncultured bacteria[J]. Nature Communications, 2014, 5:4714.
    [39] LAGIER JC, KHELAIFIA S, ALOU MT, NDONGO S, DIONE N, HUGON P, CAPUTO A, CADORET F, TRAORE SI, SECK EH, DUBOURG G, DURAND G, MOUREMBOU G, GUILHOT E, TOGO A, BELLALI S, BACHAR D, CASSIR N, BITTAR F, DELERCE J, et al. Culture of previously uncultured members of the human gut microbiota by culturomics[J]. Nature Microbiology, 2016, 1(12):16203.
    [40] DIONE N, KHELAIFIA S, SCOLA BL, LAGIER JC, RAOULT D. A quasi-universal medium to break the aerobic/anaerobic bacterial culture dichotomy in clinical microbiology[J]. Clinical Microbiology and Infection, 2016, 22(1):53-58.
    [41] MA L, KIM J, HATZENPICHLER R, KARYMOV MA, HUBERT N, HANAN IM, CHANG EB, ISMAGILOV RF. Gene-targeted microfluidic cultivation validated by isolation of a gut bacterium listed in Human Microbiome Project's Most Wanted taxa[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(27):9768-9773.
    [42] VILLA MM, BLOOM RJ, SILVERMAN JD, DURAND HK, JIANG S, WU AC, DALLOW EP, HUANG SQ, YOU LC, DAVID LA. Interindividual variation in dietary carbohydrate metabolism by gut bacteria revealed with droplet microfluidic culture[J]. mSystems, 2020, 5(3):e00864-e00819.
    [43] KAEBERLEIN T, LEWIS K, EPSTEIN SS. Isolating "uncultivable" microorganisms in pure culture in a simulated natural environment[J]. Science, 2002, 296(5570):1127-1129.
    [44] AOI Y, KINOSHITA T, HATA T, OHTA H, OBOKATA H, TSUNEDA S. Hollow-fiber membrane chamber as a device for in situ environmental cultivation[J]. Applied and Environmental Microbiology, 2009, 75(11):3826-3833.
    [45] TANAKA Y, BENNO Y. Application of a single-colony coculture technique to the isolation of hitherto unculturable gut bacteria[J]. Microbiology and Immunology, 2015, 59(2):63-70.
    [46] CROSS KL, CAMPBELL JH, BALACHANDRAN M, CAMPBELL AG, COOPER CJ, GRIFFEN A, HEATON M, JOSHI S, KLINGEMAN D, LEYS E, YANG ZM, PARKS JM, PODAR M. Targeted isolation and cultivation of uncultivated bacteria by reverse genomics[J]. Nature Biotechnology, 2019, 37(11):1314-1321.
    [47] 周梦情, 陈从英. 猪肠道细菌培养组学研究进展[J]. 畜牧兽医学报, 2021, 52(5):1186-1194. ZHOU MQ, CHEN CY. Research progress on intestinal bacteria culturomics of pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(5):1186-1194(in Chinese).
    [48] WAN MAKHTAR WRW, BHARUDIN I, SAMSULRIZAL NH, YUSOF NY. Whole genome sequencing analysis of Salmonella enterica serovar typhi:history and current approaches[J]. Microorganisms, 2021, 9(10):2155.
    [49] ZHOU K, LOKATE M, DEURENBERG RH, ARENDS J, LO-TENFOE J, GRUNDMANN H, ROSSEN JWA, FRIEDRICH AW. Characterization of a CTX-M-15 producing Klebsiella pneumoniae outbreak strain assigned to a novel sequence type (1427)[J]. Frontiers in Microbiology, 2015, 6:1250.
    [50] SENG P, DRANCOURT M, GOURIET F, la SCOLA B, FOURNIER PE, ROLAIN JM, RAOULT D. Ongoing revolution in bacteriology:routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry[J]. Clinical Infectious Diseases, 2009, 49(4):543-551.
    [51] DUMOLIN C, AERTS M, VERHEYDE B, SCHELLAERT S, VANDAMME T, van der JEUGT F, de CANCK E, Cnockaert M, Wieme AD, Cleenwerck I, Peiren J, Dawyndt P, Vandamme P, Carlier A. Introducing SPeDE:high-throughput dereplication and accurate determination of microbial diversity from matrix-assisted laser desorption-ionization time of flight mass spectrometry data[J]. mSystems, 2019, 4(5):e00437-e00419.
    [52] AMRANE S, HOCQUART M, AFOUDA P, KUETE E, PHAM TPT, DIONE N, NGOM II, VALLES C, BACHAR D, RAOULT D, LAGIER JC. Metagenomic and culturomic analysis of gut microbiota dysbiosis during Clostridium difficile infection[J]. Scientific Reports, 2019, 9:12807.
    [53] HUANG WE, GRIFFITHS RI, THOMPSON IP, BAILEY MJ, WHITELEY AS. Raman microscopic analysis of single microbial cells[J]. Analytical Chemistry, 2004, 76(15):4452-4458.
    [54] OREN A, GARRITY GM, PARTE AC. Why are so many effectively published names of prokaryotic taxa never validated?[J]. International Journal of Systematic and Evolutionary Microbiology, 2018, 68(7):2125-2129.
    [55] GARRITY GM, PARKER CT, TINDALL BJ. International code of nomenclature of prokaryotes[J]. International Journal of Systematic and Evolutionary Microbiology, 2019, 69(1A):S1-S111.
    [56] YOON SH, HA SM, KWON S, LIM J, KIM Y, SEO H, CHUN J. Introducing EzBioCloud:a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies[J]. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(5):1613-1617.
    [57] FEDERHEN S. The NCBI taxonomy database[J]. Nucleic Acids Research, 2011, 40(D1):D136-D143.
    [58] YILMAZ P, PARFREY LW, YARZA P, GERKEN J, PRUESSE E, QUAST C, SCHWEER T, PEPLIES J, LUDWIG W, GLÖCKNER FO. The SILVA and "all-species living tree project (LTP) " taxonomic frameworks[J]. Nucleic Acids Research, 2013, 42(D1):D643-D648.
    [59] MURRAY AE, FREUDENSTEIN J, GRIBALDO S, HATZENPICHLER R, HUGENHOLTZ P, KÄMPFER P, KONSTANTINIDIS KT, LANE CE, PAPKE RT, PARKS DH, ROSSELLO-MORA R, STOTT MB, SUTCLIFFE IC, THRASH JC, VENTER SN, WHITMAN WB, ACINAS SG, AMANN RI, ANANTHARAMAN K, ARMENGAUD J, et al. Roadmap for naming uncultivated archaea and bacteria[J]. Nature Microbiology, 2020, 5(8):987-994.
    [60] YOUNG JM. Legitimacy is an essential concept of the International Code of Nomenclature of Prokaryotes-a major revision of the code is called for[J]. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(pt 5):1252-1257.
    [61] D'ELIA L, del MONDO A, SANTORO M, de NATALE A, Pinto G, Pollio A. Microorganisms from harsh and extreme environments:a collection of living strains at ACUF (Naples, Italy)[J]. Ecological Questions, 2018, 29(3):1.
    [62] SMITH D, RYAN M. Implementing best practices and validation of cryopreservation techniques for microorganisms[J]. The Scientific World Journal, 2012, 2012:805659.
    [63] BECKER P, BOSSCHAERTS M, CHAERLE P, DANIEL HM, HELLEMANS A, OLBRECHTS A, RIGOUTS L, WILMOTTE A, HENDRICKX M. Public microbial resource centers:key hubs for findable, accessible, interoperable, and reusable (FAIR) microorganisms and genetic materials[J]. Applied and Environmental Microbiology, 2019, 85(21):e01444-e01419.
    [64] LAGKOUVARDOS I, PUKALL R, ABT B, FOESEL BU, MEIER-KOLTHOFF JP, KUMAR N, BRESCIANI A, MARTÍNEZ I, JUST S, ZIEGLER C, BRUGIROUX S, GARZETTI D, WENNING M, BUI TPN, WANG J, HUGENHOLTZ F, PLUGGE CM, PETERSON DA, HORNEF MW, BAINES JF, et al. The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota[J]. Nature Microbiology, 2016, 1:16131.
    [65] WYLENSEK D, HITCH TCA, RIEDEL T, AFRIZAL A, KUMAR N, WORTMANN E, LIU TZ, DEVENDRAN S, LESKER TR, HERNÁNDEZ SB, HEINE V, BUHL EM, D'AGOSTINO PM, CUMBO F, FISCHÖDER T, WYSCHKON M, LOOFT T, PARREIRA VR, ABT B, DODEN HL, et al. A collection of bacterial isolates from the pig intestine reveals functional and taxonomic diversity[J]. Nature Communications, 2020, 11:6389.
    [66] LAGIER JC, HUGON P, KHELAIFIA S, FOURNIER PE, la SCOLA B, RAOULT D. The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota[J]. Clinical Microbiology Reviews, 2015, 28(1):237-264.
    [67] HUMAN MICROBIOME JUMPSTART REFERENCE STRAINS CONSORTIUM, NELSON KE, WEINSTOCK GM, HIGHLANDER SK, WORLEY KC, CREASY HH, WORTMAN JR, RUSCH DB, MITREVA M, SODERGREN E, CHINWALLA AT, FELDGARDEN M, GEVERS D, HAAS BJ, MADUPU R, WARD DV, BIRREN BW, GIBBS RA, METHE B, PETROSINO JF, et al. A catalog of reference genomes from the human microbiome[J]. Science, 2010, 328(5981):994-999.
    [68] HUGON P, DUFOUR JC, COLSON P, FOURNIER PE, SALLAH K, RAOULT D. A comprehensive repertoire of prokaryotic species identified in human beings[J]. The Lancet Infectious Diseases, 2015, 15(10):1211-1219.
    [69] LIU C, DU MX, ABUDUAINI R, YU HY, LI DH, WANG YJ, ZHOU N, JIANG MZ, NIU PX, HAN SS, CHEN HH, SHI WY, WU LH, XIN YH, MA JC, ZHOU YG, JIANG CY, LIU HW, LIU SJ. Enlightening the taxonomy darkness of human gut microbiomes with a cultured biobank[J]. Microbiome, 2021, 9(1):119.
    [70] TURNBAUGH PJ, LEY RE, HAMADY M, FRASER-LIGGETT CM, KNIGHT R, GORDON JI. The human microbiome project[J]. Nature, 2007, 449(7164):804-8100.
    [71] LIU C, ZHOU N, DU MX, SUN YT, WANG K, WANG YJ, LI DH, YU HY, SONG YQ, BAI BB, XIN YH, WU LH, JIANG CY, FENG J, XIANG H, ZHOU YG, MA JC, WANG J, LIU HW, LIU SJ. The mouse gut microbial biobank expands the coverage of cultured bacteria[J]. Nature Communications, 2020, 11:79.
    [72] WANG XF, HOWE S, WEI XY, DENG FL, TSAI T, CHAI JM, XIAO YP, YANG H, MAXWELL CV, LI Y, ZHAO JC. Comprehensive cultivation of the swine gut microbiome reveals high bacterial diversity and guides bacterial isolation in pigs[J]. mSystems, 2021, 6(4):e0047721.
    [73] WU JY, LIU M, ZHOU MQ, WU L, YANG H, HUANG LS, CHEN CY. Isolation and genomic characterization of five novel strains of Erysipelotrichaceae from commercial pigs[J]. BMC Microbiology, 2021, 21(1):125.
    [74] JOVEL J, PATTERSON J, WANG WW, HOTTE N, O'KEEFE S, MITCHEL T, PERRY T, KAO DN, MASON AL, MADSEN KL, WONG GKS. Characterization of the gut microbiome using 16S or shotgun metagenomics[J]. Frontiers in Microbiology, 2016, 7:459.
    [75] GOŁĘBIEWSKI M, TRETYN A. Generating amplicon reads for microbial community assessment with next-generation sequencing[J]. Journal of Applied Microbiology, 2020, 128(2):330-354.
    [76] KAMADA N, CHEN GY, INOHARA N, NÚÑEZ G. Control of pathogens and pathobionts by the gut microbiota[J]. Nature Immunology, 2013, 14(7):685-690.
    [77] LLOYD-PRICE J, MAHURKAR A, RAHNAVARD G, CRABTREE J, ORVIS J, HALL AB, BRADY A, CREASY HH, MCCRACKEN C, GIGLIO MG, MCDONALD D, FRANZOSA EA, KNIGHT R, WHITE O, HUTTENHOWER C. Strains, functions and dynamics in the expanded Human Microbiome Project[J]. Nature, 2017, 550(7674):61-66.
    [78] DHARIWAL A, CHONG J, HABIB S, KING IL, AGELLON LB, XIA JG. MicrobiomeAnalyst:a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data[J]. Nucleic Acids Research, 2017, 45(W1):W180-W188.
    [79] SINGH P, TEAL TK, MARSH TL, TIEDJE JM, MOSCI R, JERNIGAN K, ZELL A, NEWTON DW, SALIMNIA H, LEPHART P, SUNDIN D, KHALIFE W, BRITTON RA, RUDRIK JT, MANNING SD. Intestinal microbial communities associated with acute enteric infections and disease recovery[J]. Microbiome, 2015, 3:45.
    [80] BESCUCCI DM, MOOTE PE, ORTEGA POLO R, UWIERA RRE, INGLIS GD. Salmonella enterica serovar typhimurium temporally modulates the enteric microbiota and host responses to overcome colonization resistance in swine[J]. Applied and Environmental Microbiology, 2020, 86(21):e01569-e01520.
    [81] PARKS DH, IMELFORT M, SKENNERTON CT, HUGENHOLTZ P, TYSON GW. CheckM:assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes[J]. Genome Research, 2015, 25(7):1043-1055.
    [82] CHEN CY, ZHOU YY, FU H, XIONG XW, FANG SM, JIANG H, WU JY, YANG H, GAO J, HUANG LS. Expanded catalog of microbial genes and metagenome-assembled genomes from the pig gut microbiome[J]. Nature Communications, 2021, 12:1106.
    [83] DONG B, LIN XQ, JING XH, HU TY, ZHOU JW, CHEN JW, XIAO L, WANG B, CHEN Z, LIU J, HU YY, LIU GL, LIU SS, LIU JN, WEI WK, ZOU YQ. A bacterial genome and culture collection of gut microbial in weanling piglet[J]. Microbiology Spectrum, 2022, 10(1):e0241721.
    [84] 段云峰, 蔡峰, 律娜, 朱宝利. 益生菌促进胃肠道健康的机制及应用[J]. 微生物学报, 2022, 62(3):836-847. DUAN YF, CAI F, LV N, ZHU BL. The mechanism and application of probiotics in promoting gastrointestinal health[J]. Acta Microbiologica Sinica, 2022, 62(3):836-847(in Chinese).
    [85] KRAUTKRAMER KA, FAN J, BÄCKHED F. Gut microbial metabolites as multi-kingdom intermediates[J]. Nature Reviews Microbiology, 2021, 19(2):77-94.
    [86] GUO H, CHOU WC, LAI YJ, LIANG KX, TAM JW, BRICKEY WJ, CHEN L, MONTGOMERY ND, LI X, BOHANNON LM, SUNG AD, CHAO NJ, PELED JU, GOMES ALC, van den BRINK MRM, FRENCH MJ, MACINTYRE AN, SEMPOWSKI GD, TAN XM, SARTOR RB, et al. Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites[J]. Science, 2020, 370(6516):eaay9097.
    [87] VISCONTI A, le ROY CI, ROSA F, ROSSI N, MARTIN TC, MOHNEY RP, LI WZ, de RINALDIS E, BELL JT, VENTER JC, NELSON KE, SPECTOR TD, FALCHI M. Interplay between the human gut microbiome and host metabolism[J]. Nature Communications, 2019, 10:4505.
    [88] SCHWALM ND III, GROISMAN EA. Navigating the gut buffet:control of polysaccharide utilization in Bacteroides spp.[J]. Trends in Microbiology, 2017, 25(12):1005-1015.
    [89] KUGADAS A, WRIGHT Q, GEDDES-MCALISTER J, GADJEVA M. Role of microbiota in strengthening ocular mucosal barrier function through secretory IgA[J]. Investigative Ophthalmology & Visual Science, 2017, 58(11):4593-4600.
    [90] NATIVIDAD JM, AGUS A, PLANCHAIS J, LAMAS B, JARRY AC, MARTIN R, MICHEL ML, CHONG-NGUYEN C, ROUSSEL R, STRAUBE M, JEGOU S, MCQUITTY C, le GALL M, da COSTA G, LECORNET E, MICHAUDEL C, MODOUX M, GLODT J, SOKOL H. Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome[J]. Cell Metabolism, 2018, 28(5):737-749.e4.
    [91] DERRIEN M, VAUGHAN EE, PLUGGE CM, de VOS WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium[J]. International Journal of Systematic and Evolutionary Microbiology, 2004, 54(5):1469-1476.
    [92] DEPOMMIER C, van HUL M, EVERARD A, DELZENNE NM, de VOS WM, CANI PD. Pasteurized Akkermansia muciniphila increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice[J]. Gut Microbes, 2020, 11(5):1231-1245.
    [93] HUYGHEBAERT G, DUCATELLE R, IMMERSEEL FV. An update on alternatives to antimicrobial growth promoters for broilers[J]. The Veterinary Journal, 2011, 187(2):182-188.
    [94] SHEN YB, PIAO XS, KIM SW, WANG L, LIU P, YOON I, ZHEN YG. Effects of yeast culture supplementation on growth performance, intestinal health, and immune response of nursery pigs[J]. Journal of Animal Science, 2009, 87(8):2614-2624.
    [95] MØLBAK L, THOMSEN LE, JENSEN TK, BACH KNUDSEN KE, BOYE M. Increased amount of Bifidobacterium thermacidophilum and Megasphaera elsdenii in the colonic microbiota of pigs fed a swine dysentery preventive diet containing chicory roots and sweet lupine[J]. Journal of Applied Microbiology, 2007, 103(5):1853-1867.
    [96] XU S, CHENG JJ, MENG XC, XU Y, MU Y. Complete genome and comparative genome analysis of Lactobacillus reuteri YSJL-12, a potential probiotics strain isolated from healthy sow fresh feces[J]. Evolutionary Bioinformatics Online, 2020, 16:1176934320942192.
    [97] CHEN CY, FANG SM, WEI H, HE MZ, FU H, XIONG XW, ZHOU YY, WU JY, GAO J, YANG H, HUANG LS. Prevotella copri increases fat accumulation in pigs fed with formula diets[J]. Microbiome, 2021, 9(1):175.
    [98] TETT A, PASOLLI E, MASETTI G, ERCOLINI D, SEGATA N. Prevotella diversity, niches and interactions with the human host[J]. Nature Reviews Microbiology, 2021, 19(9):585-599.
    [99] LANDRY BP, TABOR JJ. Engineering diagnostic and therapeutic gut bacteria[J]. Microbiology spectrum, 2017, 5(5).
    [100] VIGOUROUX A, BIKARD D. CRISPR tools to control gene expression in bacteria[J]. Microbiology and Molecular Biology Reviews:MMBR, 2020, 84(2):e00077-e00019.
    [101] CASSIR N, BENAMAR S, KHALIL JB, CROCE O, SAINT-FAUST M, JACQUOT A, MILLION M, AZZA S, ARMSTRONG N, HENRY M, JARDOT P, ROBERT C, GIRE C, LAGIER JC, CHABRIÈRE E, GHIGO E, MARCHANDIN H, SARTOR C, BOUTTE P, CAMBONIE G, et al. Clostridium butyricum strains and dysbiosis linked to necrotizing enterocolitis in preterm neonates[J]. Clinical Infectious Diseases:an Official Publication of the Infectious Diseases Society of America, 2015, 61(7):1107-1115.
    [102] 刘敏, 吴金鸳, 陈从英. 不同粪菌悬液处理方式对猪粪菌移植过程中细菌活性及活菌组成的影响[J]. 畜牧兽医学报, 2020, 51(5):1040-1048. LIU M, WU JY, CHEN CY. Effects of different treatments of faecal microbial suspensions on the activity and composition of live bacteria in faecal microbiota transplantation in pigs[J]. Chinese Journal of Animal and Veterinary Sciences, 2020, 51(5):1040-1048(in Chinese).
    [103] YANG H, WU JY, HUANG XC, ZHOU YY, ZHANG YF, LIU M, LIU Q, KE SL, HE MZ, FU H, FANG SM, XIONG XW, JIANG H, CHEN Z, WU ZZ, GONG HF, TONG XK, HUANG YZ, MA JW, GAO J, et al. ABO genotype alters the gut microbiota by regulating GalNAc levels in pigs[J]. Nature, 2022, 606(7913):358-367.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘莎,陈从英. 肠道微生物培养的研究进展及应用[J]. 微生物学报, 2023, 63(3): 881-899

复制
分享
文章指标
  • 点击次数:960
  • 下载次数: 2018
  • HTML阅读次数: 1606
  • 引用次数: 0
历史
  • 收稿日期:2022-07-11
  • 录用日期:2022-09-26
  • 在线发布日期: 2023-03-08
  • 出版日期: 2023-03-04
文章二维码