原核生物Ⅶ型毒素-抗毒素系统研究进展
作者:
基金项目:

国家自然科学基金(82225028,82172287,32170045)


Progress of type Ⅶ toxin-antitoxin system in prokaryotes
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [85]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    毒素-抗毒素(toxin-antitoxin,TA)系统是普遍存在于细菌、古细菌及原噬菌体中的遗传元件,通常由分别编码毒素和编码抗毒素的基因组成。毒素在细菌细胞中较为稳定,而抗毒素则容易被降解。大多数毒素为蛋白并具有酶的活性,通过影响蛋白质的翻译、DNA的复制等重要生命活动从而对细菌产生毒性,抑制细菌生长。抗毒素为蛋白质或非编码RNA,通过极其多样的方式,中和毒素的毒性。目前发现TA在调控质粒拷贝数、流产性感染、生物被膜的形成等过程中发挥着重要作用。随着研究的不断深入,新型TA不断被发现,极大地促进了我们对于TA的认识。目前TA已经扩展到I-Ⅷ型,本文总结了近期发现的新型TA,并重点介绍了最新发现的Ⅶ型TA及其特殊的中和机制。由于TA与病原微生物的致病性密切相关,因此,深入研究这些TA可以为耐药微生物的治疗提供新的靶点。

    Abstract:

    Toxin-antitoxin systems (TAs) are prevalent genetic elements in bacteria, archaea, and prophages, which are usually composed of a growth-inhibiting toxin and its cognate antitoxin. Toxins are stable in bacterial cells, while antitoxins are prone to be degraded by the ATP-dependent proteases. Most toxins are proteins and have enzyme activity, which inhibit bacterial growth by affecting important life activities such as protein translation and DNA replication. Antitoxins are either proteins or noncoding RNAs that neutralize the toxicity of toxins to bacteria in diverse ways. The available studies have demonstrated that TAs function as plasmid-stabilization elements, provide defense against phages, and promote biofilm formation. As the research deepens, increasing novel TAs have been discovered, which improves our understanding of TAs. At present, the classification of TAs has been extended to types Ⅰ-Ⅷ. This paper summarizes the recent discoveries of new TAs and focuses on the type Ⅶ TA in which the enzymatic antitoxin chemically modifies the toxin to neutralize it. Since TAs are closely associated with the pathogenicity of pathogenic microorganisms, in-depth study of these TAs can provide new targets for the treatment of drug-resistant microorganisms.

    参考文献
    [1] HARMS A, BRODERSEN DE, MITARAI N, GERDES K. Toxins, targets, and triggers:an overview of toxin-antitoxin biology[J]. Molecular Cell, 2018, 70(5):768-784.
    [2] PAGE R, PETI W. Toxin-antitoxin systems in bacterial growth arrest and persistence[J]. Nature Chemical Biology, 2016, 12(4):208-214.
    [3] CAVAILLON JM. Historical links between toxinology and immunology[J]. Pathogens and Disease, 2018, 76(3):10.1093/femspd/fty019.
    [4] KAMRUZZAMAN M, WU AY, IREDELL JR. Biological functions of type Ⅱ toxin-antitoxin systems in bacteria[J]. Microorganisms, 2021, 9(6):1276.
    [5] WANG XX, YAO JY, SUN YC, WOOD TK. Type Ⅶ toxin/antitoxin classification system for antitoxins that enzymatically neutralize toxins[J]. Trends in Microbiology, 2021, 29(5):388-393.
    [6] CHOI JS, KIM W, SUK S, PARK H, BAK G, YOON J, LEE Y. The small RNA, SdsR, acts as a novel type of toxin in Escherichia coli[J]. RNA Biology, 2018, 15(10):1319-1335.
    [7] SONG S, WOOD TK. Toxin/antitoxin system paradigms:toxins bound to antitoxins are not likely activated by preferential antitoxin degradation[J]. Advanced Biosystems, 2020, 4(3):e1900290.
    [8] JURĖNAS D, FRAIKIN N, GOORMAGHTIGH F, van MELDEREN L. Biology and evolution of bacterial toxin-antitoxin systems[J]. Nature Reviews Microbiology, 2022, 20(6):335-350.
    [9] BRIELLE R, PINEL-MARIE ML, FELDEN B. Linking bacterial type I toxins with their actions[J]. Current Opinion in Microbiology, 2016, 30:114-121.
    [10] GERDES K, BECH FW, JØRGENSEN ST, LØBNER-OLESEN A, RASMUSSEN PB, ATLUNG T, BOE L, KARLSTROM O, MOLIN S, von MEYENBURG K. Mechanism of postsegregational killing by the hok gene product of the parB system of plasmid R1 and its homology with the relF gene product of the E. coli relB operon[J]. The EMBO Journal, 1986, 5(8):2023-2029.
    [11] WAGNER EGH, UNOSON C. The toxin-antitoxin system tisB-istR1:expression, regulation, and biological role in persister phenotypes[J]. RNA Biology, 2012, 9(12):1513-1519.
    [12] LEROUX M, LAUB MT. Toxin-antitoxin systems as phage defense elements[J]. Annual Review of Microbiology, 2022, 76:21-43.
    [13] SINGH G, YADAV M, GHOSH C, RATHORE JS. Bacterial toxin-antitoxin modules:classification, functions, and association with persistence[J]. Current Research in Microbial Sciences, 2021, 2:100047.
    [14] GOEDERS N, van MELDEREN L. Toxin-antitoxin systems as multilevel interaction systems[J]. Toxins, 2014, 6(1):304-324.
    [15] COUSSENS NP, DAINES DA. Wake me when it՚s over-bacterial toxin-antitoxin proteins and induced dormancy[J]. Experimental Biology and Medicine:Maywood, N J, 2016, 241(12):1332-1342.
    [16] GERDES K, MAISONNEUVE E. Bacterial persistence and toxin-antitoxin loci[J]. Annual Review of Microbiology, 2012, 66:103-123.
    [17] CATAUDELLA I, TRUSINA A, SNEPPEN K, GERDES K, MITARAI N. Conditional cooperativity in toxin-antitoxin regulation prevents random toxin activation and promotes fast translational recovery[J]. Nucleic Acids Research, 2012, 40(14):6424-6434.
    [18] WOOD TL, WOOD TK. The HigB/HigA toxin/antitoxin system of Pseudomonas aeruginosa influences the virulence factors pyochelin, pyocyanin, and biofilm formation[J]. MicrobiologyOpen, 2016, 5(3):499-511.
    [19] CHAN WT, NIETO C, HARIKRISHNA JA, KHOO SK, OTHMAN RY, ESPINOSA M, YEO CC. Genetic regulation of the yefM-yoeB toxin-antitoxin locus of Streptococcus pneumoniae[J]. Journal of Bacteriology, 2011, 193(18):4612-4625.
    [20] YAMAGUCHI Y, PARK JH, INOUYE M. MqsR, a crucial regulator for quorum sensing and biofilm formation, is a GCU-specific mRNA interferase in Escherichia coli[J]. The Journal of Biological Chemistry, 2009, 284(42):28746-28753.
    [21] LEWIS K. Multidrug tolerance of biofilms and persister cells[J]. Current Topics in Microbiology and Immunology, 2008, 322:107-131.
    [22] FINERAN PC, BLOWER TR, FOULDS IJ, HUMPHREYS DP, LILLEY KS, SALMOND GPC. The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(3):894-899.
    [23] MANIKANDAN P, SANDHYA S, NADIG K, PAUL S, SRINIVASAN N, ROTHWEILER U, SINGH M. Identification, functional characterization, assembly and structure of ToxIN type Ⅲ toxin-antitoxin complex from E. coli[J]. Nucleic Acids Research, 2022, 50(3):1687-1700.
    [24] BLOWER TR, FINERAN PC, JOHNSON MJ, TOTH IK, HUMPHREYS DP, SALMOND GPC. Mutagenesis and functional characterization of the RNA and protein components of the toxIN abortive infection and toxin-antitoxin locus of Erwinia[J]. Journal of Bacteriology, 2009, 191(19):6029-6039.
    [25] MASUDA H, TAN Q, AWANO N, WU KP, INOUYE M. YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli[J]. Molecular Microbiology, 2012, 84(5):979-989.
    [26] HELLER DM, TAVAG M, HOCHSCHILD A. CbtA toxin of Escherichia coli inhibits cell division and cell elongation via direct and independent interactions with FtsZ and MreB[J]. PLoS Genetics, 2017, 13(9):e1007007.
    [27] WANG XX, LORD DM, CHENG HY, OSBOURNE DO, HONG SH, SANCHEZ-TORRES V, QUIROGA C, ZHENG K, HERRMANN T, PETI W, et al. A new type Ⅴ toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS[J]. Nature Chemical Biology, 2012, 8(10):855-861.
    [28] AAKRE CD, PHUNG TN, HUANG D, LAUB MT. A bacterial toxin inhibits DNA replication elongation through a direct interaction with the β sliding clamp[J]. Molecular Cell, 2013, 52(5):617-628.
    [29] YAO JY, ZHEN XK, TANG KH, LIU TL, XU XL, CHEN Z, GUO YX, LIU XX, WOOD TK, OUYANG SY, WANG XX. Novel polyadenylylation-dependent neutralization mechanism of the HEPN/MNT toxin/antitoxin system[J]. Nucleic Acids Research, 2020, 48(19):11054-11067.
    [30] LI M, GONG LY, CHENG FY, YU HY, ZHAO DH, WANG R, WANG T, ZHANG SJ, ZHOU J, SHMAKOV SA, KOONIN EV, XIANG H. Toxin-antitoxin RNA pairs safeguard CRISPR-Cas systems[J]. Science, 2021, 372(6541):eabe5601.
    [31] KARLOWICZ A, WEGRZYN K, DUBIEL A, ROPELEWSKA M, KONIECZNY I. Proteolysis in plasmid DNA stable maintenance in bacterial cells[J]. Plasmid, 2016, 86:7-13.
    [32] GERDES K, RASMUSSEN PB, MOLIN S. Unique type of plasmid maintenance function:postsegregational killing of plasmid-free cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83(10):3116-3120.
    [33] ROBERTS RC, STRÖM AR, HELINSKI DR. The parDE operon of the broad-host-range plasmid RK2 specifies growth inhibition associated with plasmid loss[J]. Journal of Molecular Biology, 1994, 237(1):35-51.
    [34] DY RL, PRZYBILSKI R, SEMEIJN K, SALMOND GPC, FINERAN PC. A widespread bacteriophage abortive infection system functions through a type Ⅳ toxin-antitoxin mechanism[J]. Nucleic Acids Research, 2014, 42(7):4590-4605.
    [35] NI SW, LI BY, TANG KH, YAO JY, WOOD TK, WANG PX, WANG XX. Conjugative plasmid-encoded toxin-antitoxin system PrpT/PrpA directly controls plasmid copy number[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(4):e2011577118.
    [36] ZOU J, PENG B, QU JX, ZHENG J. Are bacterial persisters dormant cells only?[J]. Frontiers in Microbiology, 2022, 12:708580.
    [37] GERMAIN E, CASTRO-ROA D, ZENKIN N, GERDES K. Molecular mechanism of bacterial persistence by HipA[J]. Molecular Cell, 2013, 52(2):248-254.
    [38] FRAIKIN N, GOORMAGHTIGH F, van MELDEREN L. Type Ⅱ toxin-antitoxin systems:evolution and revolutions[J]. Journal of Bacteriology, 2020, 202(7):e00763-e00719.
    [39] YASHIRO Y, ZHANG CQ, SAKAGUCHI Y, SUZUKI T, TOMITA K. Molecular basis of glycyl-tRNAGly acetylation by TacT from Salmonella typhimurium[J]. Cell Reports, 2021, 37(12):110130.
    [40] CHEVERTON AM, GOLLAN B, PRZYDACZ M, WONG CT, MYLONA A, HARE SA, HELAINE S. A Salmonella toxin promotes persister formation through acetylation of tRNA[J]. Molecular Cell, 2016, 63(1):86-96.
    [41] LIU JY, DENG Y, LI L, LI B, LI YY, ZHOU SS, SHIRTLIFF ME, XU ZB, PETERS BM. Discovery and control of culturable and viable but non-culturable cells of a distinctive Lactobacillus harbinensis strain from spoiled beer[J]. Scientific Reports, 2018, 8(1):11446.
    [42] 张铁华, 孟玲玲, 赵凤. 毒素-抗毒素系统对微生物活的非可培养状态形成的影响研究进展[J]. 食品科学, 2022, 43(15):275-282. ZHANG TH, MENG LL, ZHAO F. Progress in research on the effect of toxin-antitoxin systems on the formation of the viable but non-culturable state of microorganisms[J]. Food Science, 2022, 43(15):275-282(in Chinese).
    [43] LIMOLI DH, JONES CJ, WOZNIAK DJ. Bacterial extracellular polysaccharides in biofilm formation and function[J]. Microbiology Spectrum, 2015, 3(3):10.1128/microbiolspec.MB-10.1128/microbiolspe0011-2014.
    [44] SINGH S, SINGH SK, CHOWDHURY I, SINGH R. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents[J]. The Open Microbiology Journal, 2017, 11:53-62.
    [45] KUMAR S, ENGELBERG-KULKA H. Quorum sensing peptides mediating interspecies bacterial cell death as a novel class of antimicrobial agents[J]. Current Opinion in Microbiology, 2014, 21:22-27.
    [46] MERFA MV, NIZA B, TAKITA MA, de SOUZA AA. The MqsRA toxin-antitoxin system from Xylella fastidiosa plays a key role in bacterial fitness, pathogenicity, and persister cell formation[J]. Frontiers in Microbiology, 2016, 7:904.
    [47] ORIOL C, CENGHER L, MANNA AC, MAURO T, PINEL-MARIE ML, FELDEN B, CHEUNG A, ROUILLON A. Expanding the Staphylococcus aureus SarA regulon to small RNAs[J]. mSystems, 2021, 6(5):e0071321.
    [48] 侯博, 王晨燕, 周伦江. 毒素-抗毒素系统在细菌生物被膜形成中的作用及调控机制[J/OL]. 畜牧兽医学报, 2022:1-12. (2022-07-22). https://kns.cnki.net/kcms/detail/11.1985.S.20220721.1136.002.html. HOU B, WANG CY, ZHOU LJ. The roles and regulatory mechanism of toxin-antitoxin system in bacterial biofilm formation[J/OL]. Acta Veterinaria et Zootechnica Sinica, 2022:1-12. (2022-07-22). https://kns.cnki. net/kcms/detail/11.1985.S.20220721.1136.002.html (in Chinese).
    [49] WANG XX, LORD DM, HONG SH, PETI W, BENEDIK MJ, PAGE R, WOOD TK. Type Ⅱ toxin/antitoxin MqsR/MqsA controls type V toxin/antitoxin GhoT/GhoS[J]. Environmental Microbiology, 2013, 15(6):1734-1744.
    [50] GARCÍA-CONTRERAS R, ZHANG XS, KIM Y, WOOD TK. Protein translation and cell death:the role of rare tRNAs in biofilm formation and in activating dormant phage killer genes[J]. PLoS One, 2008, 3(6):e2394.
    [51] SOO VWC, WOOD TK. Antitoxin MqsA represses curli formation through the master biofilm regulator CsgD[J]. Scientific Reports, 2013, 3:3186.
    [52] DY RL, RICHTER C, SALMOND GPC, FINERAN PC. Remarkable mechanisms in microbes to resist phage infections[J]. Annual Review of Virology, 2014, 1(1):307-331.
    [53] KOGA M, OTSUKA Y, LEMIRE S, YONESAKI T. Escherichia coli rnlA and rnlB compose a novel toxin-antitoxin system[J]. Genetics, 2011, 187(1):123-130.
    [54] GOEDERS N, CHAI R, CHEN BH, DAY A, SALMOND GPC. Structure, evolution, and functions of bacterial type Ⅲ toxin-antitoxin systems[J]. Toxins, 2016, 8(10):282.
    [55] PECOTA DC, WOOD TK. Exclusion of T4 phage by the hok/sok killer locus from plasmid R1[J]. Journal of Bacteriology, 1996, 178(7):2044-2050.
    [56] HAZAN R, ENGELBERG-KULKA H. Escherichia coli mazEF-mediated cell death as a defense mechanism that inhibits the spread of phage P1[J]. Molecular Genetics and Genomics, 2004, 272(2):227-234.
    [57] LEROUX M, SRIKANT S, TEODORO GIC, ZHANG T, LITTLEHALE ML, DORON S, BADIEE M, LEUNG AKL, SOREK R, LAUB MT. The DarTG toxin-antitoxin system provides phage defence by ADP-ribosylating viral DNA[J]. Nature Microbiology, 2022, 7(7):1028-1040.
    [58] 海洋, 王小雨, 谢建平. 细菌毒素-抗毒素系统在噬菌体流产感染中的作用[J]. 生物工程学报, 2022, 38(9):3291-3300. HAI Y, WANG XY, XIE JP. The role of bacterial toxin-antitoxin systems in phage abortive infections[J]. Chinese Journal of Biotechnology, 2022, 38(9):3291-3300(in Chinese).
    [59] MAKAROVA KS, WOLF YI, KOONIN EV. Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes[J]. Biology Direct, 2009, 4:19.
    [60] SBERRO H, LEAVITT A, KIRO R, KOH E, PELEG Y, QIMRON U, SOREK R. Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning[J]. Molecular Cell, 2013, 50(1):136-148.
    [61] YAO JY, GUO YX, ZENG ZS, LIU XX, SHI F, WANG XX. Identification and characterization of a HEPN-MNT family type Ⅱ toxin-antitoxin in Shewanella oneidensis[J]. Microbial Biotechnology, 2015, 8(6):961-973.
    [62] JIA XY, YAO JY, GAO ZQ, LIU GF, DONG YH, WANG XX, ZHANG H. Structure-function analyses reveal the molecular architecture and neutralization mechanism of a bacterial HEPN-MNT toxin-antitoxin system[J]. Journal of Biological Chemistry, 2018, 293(18):6812-6823.
    [63] SONGAILIENE I, JUOZAPAITIS J, TAMULAITIENE G, RUKSENAITE A, ŠULČIUS S, SASNAUSKAS G, VENCLOVAS Č, SIKSNYS V. HEPN-MNT toxin-antitoxin system:the HEPN ribonuclease is neutralized by OligoAMPylation[J]. Molecular Cell, 2020, 80(6):955-970.e7.
    [64] JAISWAL S, PAUL P, PADHI C, RAY S, RYAN D, DASH S, SUAR M. The hha-TomB toxin-antitoxin system shows conditional toxicity and promotes persister cell formation by inhibiting apoptosis-like death in S. typhimurium[J]. Scientific Reports, 2016, 6:38204.
    [65] MARIMON O, TEIXEIRA JMC, CORDEIRO TN, SOO VWC, WOOD TL, MAYZEL M, AMATA I, GARCÍA J, MORERA A, GAY M, VILASECA M, OREKHOV VY, WOOD TK, PONS M. An oxygen-sensitive toxin-antitoxin system[J]. Nature Communications, 2016, 7:13634.
    [66] BARRIOS AF, ZUO RJ, REN DC, WOOD TK. Hha, YbaJ, and OmpA regulate Escherichia coli K12 biofilm formation and conjugation plasmids abolish motility[J]. Biotechnology and Bioengineering, 2006, 93(1):188-200.
    [67] YU X, GAO XP, ZHU KX, YIN H, MAO XJ, WOJDYLA JA, QIN B, HUANG HR, WANG MT, SUN YC, CUI S. Characterization of a toxin-antitoxin system in Mycobacterium tuberculosis suggests neutralization by phosphorylation as the antitoxicity mechanism[J]. Communications Biology, 2020, 3(1):216.
    [68] CAI YM, USHER B, GUTIERREZ C, TOLCAN A, MANSOUR M, FINERAN PC, CONDON C, NEYROLLES O, GENEVAUX P, BLOWER TR. A nucleotidyltransferase toxin inhibits growth of Mycobacterium tuberculosis through inactivation of tRNA acceptor stems[J]. Science Advances, 2020, 6(31):eabb6651.
    [69] MUÑOZ-GÓMEZ AJ, SANTOS-SIERRA S, BERZAL-HERRANZ A, LEMONNIER M, DÍAZ-OREJAS R. Insights into the specificity of RNA cleavage by the Escherichia coli MazF toxin[J]. FEBS Letters, 2004, 567(2/3):316-320.
    [70] SCHIFANO JM, CRUZ JW, VVEDENSKAYA IO, EDIFOR R, OUYANG M, HUSSON RN, NICKELS BE, WOYCHIK NA. tRNA is a new target for cleavage by a MazF toxin[J]. Nucleic Acids Research, 2016, 44(3):1256-1270.
    [71] JØRGENSEN MG, PANDEY DP, JASKOLSKA M, GERDES K. HicA of Escherichia coli defines a novel family of translation-independent mRNA interferases in bacteria and archaea[J]. Journal of Bacteriology, 2009, 191(4):1191-1199.
    [72] NEUBAUER C, GAO YG, ANDERSEN KR, DUNHAM CM, KELLEY AC, HENTSCHEL J, GERDES K, RAMAKRISHNAN V, BRODERSEN DE. The structural basis for mRNA recognition and cleavage by the ribosome-dependent endonuclease RelE[J]. Cell, 2009, 139(6):1084-1095.
    [73] CRUZ JW, ROTHENBACHER FP, MAEHIGASHI T, LANE WS, DUNHAM CM, WOYCHIK NA. Doc toxin is a kinase that inactivates elongation factor Tu[J]. Journal of Biological Chemistry, 2014, 289(28):19276.
    [74] WINTHER K, TREE JJ, TOLLERVEY D, GERDES K. VapCs of Mycobacterium tuberculosis cleave RNAs essential for translation[J]. Nucleic Acids Research, 2016, 44(20):9860-9871.
    [75] JURĖNAS D, GARCIA-PINO A, van MELDEREN L. Novel toxins from type Ⅱ toxin-antitoxin systems with acetyltransferase activity[J]. Plasmid, 2017, 93:30-35.
    [76] FREIRE DM, GUTIERREZ C, GARZA-GARCIA A, GRABOWSKA AD, SALA AJ, ARIYACHAOKUN K, PANIKOVA T, BECKHAM KSH, COLOM A, POGENBERG V, CIANCI M, TUUKKANEN A, BOUDEHEN YM, PEIXOTO A, BOTELLA L, SVERGUN DI, SCHNAPPINGER D, SCHNEIDER TR, GENEVAUX P, de CARVALHO LPS, et al. An NAD+ phosphorylase toxin triggers Mycobacterium tuberculosis cell death[J]. Molecular Cell, 2019, 73(6):1282-1291.e8.
    [77] PISCOTTA FJ, JEFFREY PD, LINK AJ. ParST is a widespread toxin-antitoxin module that targets nucleotide metabolism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(3):826-834.
    [78] HARMS A, GERDES K. Back to the roots:deep view into the evolutionary history of ADP-ribosylation opened by the DNA-targeting toxin-antitoxin module DarTG[J]. Molecular Cell, 2016, 64(6):1020-1021.
    [79] JAHN N, BRANTL S, STRAHL H. Against the mainstream:the membrane-associated type Ⅰ toxin BsrG from Bacillus subtilis interferes with cell envelope biosynthesis without increasing membrane permeability[J]. Molecular Microbiology, 2015, 98(4):651-666.
    [80] CHENG FY, WANG R, YU HY, LIU C, YANG J, XIANG H, LI M. Divergent degeneration of creA antitoxin genes from minimal CRISPRs and the convergent strategy of tRNA-sequestering CreT toxins[J]. Nucleic Acids Research, 2021, 49(18):10677-10688.
    [81] KOHANSKI MA, DWYER DJ, COLLINS JJ. How antibiotics kill bacteria:from targets to networks[J]. Nature Reviews Microbiology, 2010, 8(6):423-435.
    [82] ÁLAMO MMD, TABONE M, MUÑOZ-MARTÍNEZ J, VALVERDE JR, ALONSO JC. Toxin ζ reduces the ATP and modulates the uridine diphosphate-N-acetylglucosamine pool[J]. Toxins, 2019, 11(1):29.
    [83] ZHEN XK, WU YY, GE JL, FU JQ, YE L, LIN NN, HUANG ZJ, LIU ZH, LUO ZQ, QIU JZ, OUYANG SY. Molecular mechanism of toxin neutralization in the HipBST toxin-antitoxin system of Legionella pneumophila[J]. Nature Communications, 2022, 13(1):4333.
    [84] HAN Q, ZHOU CH, WU SC, LIU Y, TRIPLETT L, MIAO JM, TOKUHISA J, DEBLAIS L, ROBINSON H, LEACH JE, LI JY, ZHAO BY. Crystal structure of Xanthomonas AvrRxo1-ORF1, a type Ⅲ effector with a polynucleotide kinase domain, and its interactor AvrRxo1-ORF2[J]. Structure, 2015, 23(10):1900-1909.
    [85] LIU HF, LU CC, LI Y, WU T, ZHANG BG, LIU BY, FENG WJ, XU Q, DONG HS, HE SY, CHU ZH, DING XH. The bacterial effector AvrRxo1 inhibits vitamin B6 biosynthesis to promote infection in rice[J]. Plant Communications, 2022, 3(3):100324.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

叶乐,甄向凯,欧阳松应. 原核生物Ⅶ型毒素-抗毒素系统研究进展[J]. 微生物学报, 2023, 63(3): 993-1007

复制
分享
文章指标
  • 点击次数:415
  • 下载次数: 996
  • HTML阅读次数: 1364
  • 引用次数: 0
历史
  • 收稿日期:2022-08-04
  • 录用日期:2022-10-04
  • 在线发布日期: 2023-03-08
  • 出版日期: 2023-03-04
文章二维码