三株真菌对重金属锰的耐受性和吸附特性研究
作者:
基金项目:

国家重点研发计划(2018YFD0200407)


Tolerance of three fungal species to heavy metal manganese and the adsorption of the metal
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】研究3种真菌对锰离子的耐受性,并研究其对溶液中Mn2+吸附的最佳条件和吸附机理,为治理锰离子污染提供技术参考。【方法】测定哈茨木霉(Trichoderma harzianum)、深绿木霉(Trichoderma atroviride)和棘孢木霉(Trichoderma asperellum)三株真菌的最低抑菌浓度(minimum inhibitory concentration,MIC),探究最佳吸附条件,并利用扫描电子显微镜(scanning electron microscopy-energy dispersive X-ray spectroscopy,SEM-EDS)和傅里叶变换红外光谱(Fourier transform infrared spectroscopy,FTIR)对吸附前后菌体进行分析。【结果】哈茨木霉、深绿木霉、棘孢木霉对重金属锰耐受的浓度可达到1 600、1 800、2 000 mg/L,最佳吸附条件为pH为7,吸附时间80 h,温度28℃,吸附率最高可达23.7%,哈茨木霉参与吸附的官能团有-OH、胺基中的-C-N-、-C=O。棘孢木霉参与吸附的官能团有-OH和-NH。深绿木霉参与吸附的官能团主要有-C-H、磷酸基团P=O、P-OH和PO43-。【结论】哈茨木霉、深绿木霉、棘孢木霉对重金属锰有较好的吸附作用,可为治理土壤中的锰污染提供重要的参考和依据。

    Abstract:

    [Objective] To explore the tolerance of three fungal species to manganese ion, the optimal conditions for them to adsorb Mn2+ in solution, and the mechanism for the adsorption, and thus to provide technical reference for the control of manganese ion pollution.[Methods] The minimum inhibitory concentration (MIC) of Trichoderma harzianum, T. atroviride and T. asperellum was determined and the optimal adsorption conditions were explored. Based on scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) and Fourier transform infrared spectroscopy (FTIR), fungal cells before and after the adsorption were analyzed. [Results] T. harzianum, T. atroviride, and T. asperellum could tolerate the maximum manganese concentration of 1 600 mg/L, 1 800 mg/L, and 2 000 mg/L, respectively. The optimum adsorption conditions are pH 7, adsorption time of 80 h, and temperature of 28℃, and the highest adsorption rate was up to 23.7%. The functional groups involved in the adsorption of T. harzianum were -OH, and -C-N- and-C=O in the amine group, and those of T. asperellum were -OH and -NH. The functional groups of T. atroviride were -C-H, and phosphate groups P=O, P-OH, and PO43-.[Conclusion] The screened T. harzianum, T. atroviride, and T. asperellum showed strong adsorption of heavy metal manganese, which can serve as a reference the treatment of manganese pollution in soil.

    参考文献
    [1] ALVAREZ A, SAEZ JM, DAVILA COSTA JS, COLIN VL, FUENTES MS, CUOZZO SA, BENIMELI CS, POLTI MA, AMOROSO MJ. Actinobacteria:current research and perspectives for bioremediation of pesticides and heavy metals[J]. Chemosphere, 2017, 166:41-62.
    [2] FERNÁNDEZ DS, PUCHULU ME, GEORGIEFF SM. Identification and assessment of water pollution as a consequence of a leachate plume migration from a municipal landfill site (Tucumán, Argentina)[J]. Environmental Geochemistry and Health, 2014, 36(3):489-503.
    [3] 刘佳麟, 张家铜. 土壤重金属污染的现状及其治理[J]. 山东工业技术, 2019(7):229. LIU JL, ZHANG JT. Present situation and treatment of heavy metal pollution in soil[J]. Shandong Industrial Technology, 2019(7):229(in Chinese).
    [4] 赵其国, 骆永明. 论我国土壤保护宏观战略[J]. 中国科学院院刊, 2015, 30(4):452-458. ZHAO QG, LUO YM. The macro strategy of soil protection in China[J]. Bulletin of Chinese Academy of Sciences, 2015, 30(4):452-458(in Chinese).
    [5] PINSINO A, MATRANGA V, CARMELA M. Manganese:A New Emerging Contaminant in the Environment[M]. Environmental Contamination. InTech, 2012.
    [6] das AP, GHOSH S, MOHANTY S, SUKLA LB. Consequences of manganese compounds:a review[J]. Toxicological & Environmental Chemistry, 2014, 96(7):981-997.
    [7] YAO ZT, LI JH, XIE HH, YU CH. Review on remediation technologies of soil contaminated by heavy metals[J]. Procedia Environmental Sciences, 2012, 16:722-729.
    [8] EKPERUSI OA, AIGBODION FI. Bioremediation of petroleum hydrocarbons from crude oil-contaminated soil with the earthworm:Hyperiodrilus africanus[J]. 3 Biotech, 2015, 5(6):957-965.
    [9] 肖春文, 罗秀云, 田云, 卢向阳. 重金属镉污染生物修复的研究进展[J]. 化学与生物工程, 2013, 30(8):1-4. XIAO CW, LUO XY, TIAN Y, LU XY. Research progress of bioremediation of heavy metal cadmium pollution[J]. Chemistry & Bioengineering, 2013, 30(8):1-4(in Chinese).
    [10] 王建龙, 陈灿. 生物吸附法去除重金属离子的研究进展[J]. 环境科学学报, 2010, 30(4):673-701. WANG JL, CHEN C. Research advances in heavy metal removal by biosorption[J]. Acta Scientiae Circumstantiae, 2010, 30(4):673-701(in Chinese).
    [11] IGWE J, ABIA A. A bioseparation process for removing heavy metals from waste water using biosorbents[J]. African Journal of Biotechnology, 2006, 5(12):1167-1179.
    [12] FADEL M, HASSANEIN NM, ELSHAFEI MM, MOSTAFA A H, AHMED M A, KHATER H M. Biosorption of manganese from groundwater by biomass of Saccharomyces cerevisiae[J]. HBRC Journal, 2017, 13(1):106-113.
    [13] 解琳, 郝宇, 齐欣, 刘本松, 温昱晨, 刘丽杰, 杨晓杰, 金忠民. 一株耐铅镉真菌的分离鉴定及其吸附特性的研究[J]. 微生物学报, 2020, 60(4):780-788. XIE L, HAO Y, QI X, LIU BS, WEN YC, LIU LJ, YANG XJ, JIN ZM. Isolation, identification and biosorption characteristics of a lead and cadmium resistant fungus[J]. Acta Microbiologica Sinica, 2020, 60(4):780-788(in Chinese).
    [14] 刘冬梅, 倪佳鑫, 冮苗苗, 付艺伟, 孙辉, 鲁晶. 小球藻对多种重金属吸附性能的研究[J]. 环境科学学报, 2020, 40(10):3710-3718. LIU DM, NI JX, GANG MM, FU YW, SUN H, LU J. Research on adsorption properties of several heavy metals by chlorella[J]. Acta Scientiae Circumstantiae, 2020, 40(10):3710-3718(in Chinese).
    [15] 尤佳琪, 吴明德, 李国庆. 木霉在植物病害生物防治中的应用及作用机制[J]. 中国生物防治学报, 2019, 35(6):966-976. YOU JQ, WU MD, LI GQ. Application and mechanism of Trichoderma in biological control of plant disease[J]. Chinese Journal of Biological Control, 2019, 35(6):966-976(in Chinese).
    [16] 马光恕, 梁枭, 李梅, 刘明鑫, 陈玉蓉, 廉华. 木霉菌对黄瓜生理特性及立枯病防治效果的影响[J]. 中国生物防治学报, 2021, 37(2):277-285. MA GS, LIANG X, LI M, LIU MX, CHEN YR, LIAN H. Effect of Trichoderma on cucumber damping-off and physiological characteristics[J]. Chinese Journal of Biological Control, 2021, 37(2):277-285(in Chinese).
    [17] 赵玳琳, 何海永, 吴石平, 陈小均, 谭清群, 杨学辉. 棘孢木霉GYSW-6m1对草莓炭疽病的生防机制及其防病促生作用研究[J]. 中国生物防治学报, 2020, 36(4):587-595. ZHAO DL, HE HY, WU SP, CHEN XJ, TAN QQ, YANG XH. Biocontrol mechanisms and control effects of Trichoderma asperellum GYSW-6m1 on strawberry anthracnose and growth-promoting effects on strawberry[J]. Chinese Journal of Biological Control, 2020, 36(4):587-595(in Chinese).
    [18] HUSSAIN DF, MUTLAG NH. Assessment the ability of Trichoderma harzianum fungi in bioremediation of some of heavy metals in waste water[J]. IOP Conference Series:Earth and Environmental Science, 2021, 790(1):012087.
    [19] das N, RV, KARTHIKA P. Biosorption of heavy metals-an overview[J]. Indian Journal of Biotechnology, 2008, 7(2):159-169.
    [20] 铁文周, 农小芳, 赵伊, 梁康, 黄雪娇. 微生物除Mn(Ⅱ)机制及影响因素研究进展[J]. 生物工程学报, 2022, 38(1):14-25. TIE WZ, NONG XF, ZHAO Y, LIANG K, HUANG XJ. The mechanism of microbial removal of Mn(Ⅱ) and its influencing factors:a review[J]. Chinese Journal of Biotechnology, 2022, 38(1):14-25(in Chinese).
    [21] 刘磊, 宋文成. 微生物吸附重金属离子机理研究进展[J]. 安徽农业科学, 2018, 46(5):15-17. LIU L, SONG WC. Research advance in the mechanism of microbial absorption of heavy metal ions[J]. Journal of Anhui Agricultural Sciences, 2018, 46(5):15-17(in Chinese).
    [22] ZENG XX, CHAI LY, TANG JX, LIU XD, YANG ZH. Taxonomy characterization and cadmium biosorption of fungus strain[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(9):2759-2765.
    [23] KHALILNEZHAD R, OLYA ME, KHOSRAVI M, MARANDI R. Manganese biosorption from aqueous solution by Penicillium camemberti biomass in the batch and fix bed reactors:a kinetic study[J]. Applied Biochemistry and Biotechnology, 2014, 174(5):1919-1934.
    [24] XU ZG, DING Y, HUANG HM, WU L, ZHAO YL, YANG GY. Biosorption characteristics of Mn(II) by Bacillus cereus strain HM-5 isolated from soil contaminated by manganese ore[J]. Polish Journal of Environmental Studies, 2018, 28(1):463-472.
    [25] MA L, PENG YH, WU B, LEI DY, XU H. Pleurotus ostreatus nanoparticles as a new nano-biosorbent for removal of Mn(II) from aqueous solution[J]. Chemical Engineering Journal, 2013, 225:59-67.
    [26] KURNIAWAN A, SISNANDY VOA, TRILESTARI K, SUNARSO J, INDRASWATI N, ISMADJI S. Performance of durian shell waste as high capacity biosorbent for Cr(VI) removal from synthetic wastewater[J]. Ecological Engineering, 2011, 37(6):940-947.
    [27] JIN L, BAI RB. Mechanisms of lead adsorption on chitosan/PVA hydrogel beads[J]. Langmuir, 2002, 18(25):9765-9770.
    [28] HU XJ, GU HD, ZANG TT, JIN Y, QU JJ. Biosorption mechanism of Cu2+ by innovative immobilized spent substrate of fragrant mushroom biomass[J]. Ecological Engineering, 2014, 73:509-513.
    [29] 曹礼,郭图丽,周宏鑫,刘月桃,陈杰,李婷,雷玉明. 两株耐锰菌株的分离鉴定及其生长特性研究[J]. 环境工程2017增刊2, 2017:10-14+20. CAO L, GUO TL, ZHOU HX, LIU YT, CHEN J, LI T, LEI YM. Isolation and identification of two manganese-resistance strains and research on their growth characteristics[J]. Environmental Engineering 2017 Supplement 2, 2017:10-14+20. (in Chinese).
    [30] 胡琼, 邵菲菲. 木霉对植物促生作用的研究进展[J]. 安徽农业科学, 2010, 38(10):5077-5079. HU Q, SHAO FF. Research advances on the growth-promoting effect of Trichoderma on plants[J]. Journal of Anhui Agricultural Sciences, 2010, 38(10):5077-5079(in Chinese).
    [31] 蔡青云. 耐铅镉菌株的分离筛选及其吸附特性研究[D]. 赣州:江西理工大学硕士学位论文, 2015. CAI QY. Screening of lead and cadmium-resistant bacterium and research of their adsorption[D]. Ganzhou:Master's Thesis of Jiangxi University of Science and Technology, 2015(in Chinese).
    [32] 王建才, 刘兴华, 王怀中, 呼红梅, 庞丽丽, 黄保华, 朱荣生. 耐铅镉菌株的分离鉴定及其吸附能力[J]. 生物工程学报, 2020, 36(8):1600-1609. WANG JC, LIU XH, WANG HZ, HU HM, PANG LL, HUANG BH, ZHU RS. Isolation, identification and heavy metals biosorption of a lead and cadmium-tolerant strain[J]. Chinese Journal of Biotechnology, 2020, 36(8):1600-1609(in Chinese).
    [33] 李倩, 张平, 廖柏寒, 彭佩钦, 梅金星, 徐继敏. 一株耐Cd菌株的分离、鉴定及基本特性[J]. 微生物学报, 2019, 59(1):11-24. LI Q, ZHANG P, LIAO BH, PENG PQ, MEI JX, XU JM. Isolation, identification and characterization of a Cd resistant bacterium[J]. Acta Microbiologica Sinica, 2019, 59(1):11-24(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

韦天慧,宋金柱,刘诗宇,宫殿良,王棋,孙瑶. 三株真菌对重金属锰的耐受性和吸附特性研究[J]. 微生物学报, 2023, 63(3): 1023-1034

复制
分享
文章指标
  • 点击次数:279
  • 下载次数: 900
  • HTML阅读次数: 1052
  • 引用次数: 0
历史
  • 收稿日期:2022-07-08
  • 录用日期:2022-09-05
  • 在线发布日期: 2023-03-08
  • 出版日期: 2023-03-04
文章二维码