抗青枯病型根际促生菌(PGPR)菌群构建及其生物防控机制
作者:
基金项目:

国家自然科学基金(31860597);中国烟草总公司贵州省公司科技项目(201905,2021XM18,2022XM03);贵州省科技厅院士工作站(黔科合平台人才[2020]4004)


Construction of bacterial wilt-resistant and plant growth-promoting rhizobacteria (PGPR) and the mechanism of biocontrol
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [48]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】根际促生菌(plant growth promoting rhizobacteria,PGPR)防控青枯病效果不稳定是目前有益微生物生防应用的瓶颈问题,构建稳定高效拮抗青枯菌的PGPR菌群是生物防控的关键。【方法】以前期筛选到的8株PGPR菌株(112、114、Ba-S、TLZZ、LX4、LX7、Ps-S和VC110)和青枯菌(Ralstonia solanacearum,Rs)为研究对象,在前期获得烟草根系分泌物组成的基础上,采用限菌微系统和生态微孔板结合绿色荧光蛋白标记、定量聚合酶链式反应(quantitative polymerase chain reaction,qPCR)、断棒模型设计等方法,探究PGPR菌群对青枯菌入侵烟草根际的抵御机制,并在田间进行抗病、促生效果验证。【结果】LX4、Ba-S、LX7可以充分利用烟草根系分泌物中的氨基酸、糖类碳源抑制青枯菌生长,LX7和112在所有酸类碳源下均对青枯菌有抑制作用,最高抑菌率分别为40.12%(LX7+乳酸)和35.15%(112+柠檬酸)。Ps-S、112和VC110的基础生态位宽度(basal niche breadth,Bsw)分别比Rs (Bsw=2.56)高41.9%、41.0%和38.1%,Ba-S的基础生态位重叠指数(niche overlap index,NOI)显著比其他PGPR菌株高4.88%–61.76%,与青枯菌存在明显的营养利用性竞争。4株PGPR组成的菌群组合中病情指数平均为27.01%,根际青枯菌数量平均为1.1×104 CFU/g,显著低于单株和2株PGPR菌群组合,8株PGPR组成菌群处理烟株未发病,根际青枯菌数量平均为3.5×102 CFU/g。由LX4、Ba-S、LX7和VC110构成的菌群组合(菌群组合32)对不同碳源的利用效率显著高于青枯菌,尤其体现在醇类和糖类碳源利用方面,分别是青枯菌的1.62倍和1.41倍。菌群组合32田间防效显著高于其他处理,分别比菌群39(Ba-S、VC110、114和TLZZ)、40(LX4、LX7、VC110和112)和43(Ba-S、VC110、114和112)高27.18%、60.05%和54.80%,菌群32处理的产量和产值相对较好,分别较不施PGPR的对照增加67.50%和73.53%。【结论】可以利用不同PGPR菌株对青枯菌营养竞争或者拮抗竞争的特点构建PGPR菌群,多样性的PGPR菌群可以显著提高抵抗病原菌入侵的能力。

    Abstract:

    [Objective] The effect of plant growth-promoting rhizobacteria (PGPR) on bacterial wilt is unstable, which poses a challenge to the application of beneficial microorganisms. Thus, developing a stable and efficient PGPR flora against bacterial wilt is the key to the biocontrol. [Methods] The 8 anti-Ralstonia solanacearum (Rs) strains of PGPR (112, 114, Ba-S, TLZZ, LX4, LX7, Ps-S, and VC110) that had been screened out by our research group and Rs were studied. Based on the composition of tobacco root exudates, the microbial restriction microsystem, microplate, green fluorescent protein labeling, quantitative PCR, rod model design, and other methods were employed to explore the mechanism of PGPR against Rs in tobacco rhizosphere. In addition, experiment on the disease-resistant and growth-promoting effects was carried out in the field. [Results] LX4, Ba-S, and LX7 can make full use of amino acids and carbohydrates in tobacco root exudates as carbon sources to inhibit the growth of Rs. LX7 and 112 suppressed Rs with all acid carbon sources, and the highest antibacterial rates were 40.12% (LX7+lactic acid) and 35.15% (112+citric acid), respectively. The basal niche breadth (Bsw) of Ps-S, 112, and VC110 was 41.9%, 41.0%, and 38.1% higher than that of Rs (Bsw=2.56), respectively. The basal niche overlap index (NOI) of Ba-S was 4.88%-61.76% significantly higher than that of any other PGPR strains, and this strain obviously competed with Rs for nutrients. The average disease index was 27.01% and the average count of Rs in tobacco rhizosphere was 1.1×104 CFU/g in the treatments with the combinations of four PGPR strains, which were significantly lower than those in the treatments with one PGPR strain and two strains. The tobacco plants treated with 8 strains of PGPR were free from the wilt, with the average Rs count of 3.5×102 CFU/g. The utilization efficiency of different carbon sources by combination 32 (consisting of LX4, Ba-S, LX7 and VC110) was significantly higher than that by Rs and particularly the utilization efficiency of alcohols and carbohydrate by the combination was 1.62 and 1.41 folds that by Rs. The field effect of combination 32 against Rs was significantly stronger than that of other treatments. Especially, the Rs-controlling rate was 27.18%, 60.05%, and 54.80% higher than that of combinations 39 (Ba-S, VC110, 114, and TLZZ), 40 (LX4, LX7, VC110, and 112), and 43 (Ba-S, VC110, 114, and 112), respectively. The yield and output value in the treatment with combination 32 were the highest among all treatments, which were 67.50% and 73.53% higher than those of the control treatment, separately. [Conclusion] Via the nutrient competition or antagonistic characteristics, different PGPR strains can be fully utilized to develop PGPR flora against R. solanacearum. The diverse PGPR floras have significantly stronger ability to resist the invasion of pathogenic bacteria.

    参考文献
    [1] JIANG GF, WEI Z, XU J, CHEN HL, ZHANG Y, SHE XM, MACHO AP, DING W, LIAO BS. Bacterial wilt in China:history, current status, and future perspectives[J]. Frontiers in Plant Science, 2017, 8:1549.
    [2] ANDREOTE FD, PEREIRA E SILVA MC. Microbial communities associated with plants:learning from nature to apply it in agriculture[J]. Current Opinion in Microbiology, 2017, 37:29-34.
    [3] DASHTI NH, ALI NY, CHERIAN VM, MONTASSER MS. Application of plant growth-promoting rhizobacteria (PGPR) in combination with a mild strain of Cucumber mosaic virus (CMV) associated with viral satellite RNAs to enhance growth and protection against a virulent strain of CMV in tomato[J]. Canadian Journal of Plant Pathology, 2012, 34(2):177-186.
    [4] HAHM MS, SUMAYO M, HWANG YJ, JEON SA, PARK SJ, LEE JY, AHN JH, KIM BS, RYU CM, GHIM SY. Biological control and plant growth promoting capacity of rhizobacteria on pepper under greenhouse and field conditions[J]. Journal of Microbiology, 2012, 50(3):380-385.
    [5] YUAN WF, RUAN S, QI GF, WANG R, ZHAO XY. Plant growth-promoting and antibacterial activities of cultivable bacteria alive in tobacco field against Ralstonia solanacearum[J]. Environmental Microbiology, 2022, 24(3):1411-1429.
    [6] BHATTACHARYYA PN, JHA DK. Plant growth-promoting rhizobacteria (PGPR):emergence in agriculture[J]. World Journal of Microbiology and Biotechnology, 2012, 28(4):1327-1350.
    [7] RECEP K, FIKRETTIN S, ERKOL D, CAFER E. Biological control of the potato dry rot caused by Fusarium species using PGPR strains[J]. Biological Control, 2009, 50(2):194-198.
    [8] YAO LX, WU ZS, ZHENG YY, KALEEM I, LI C. Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton[J]. European Journal of Soil Biology, 2010, 46(1):49-54.
    [9] JIANG GF, ZHANG YL, GAN GY, LI WL, WAN W, JIANG YQ, YANG TJ, ZHANG Y, XU YC, WANG YK, SHEN QR, WEI Z, DINI-ANDREOTE F. Exploring rhizo-microbiome transplants as a tool for protective plant-microbiome manipulation[J]. ISME Communications, 2022, 2:10.
    [10] WANG S, WU HJ, QIAO JQ, MA LL, LIU J, XIA YF, GAO XW. Molecular mechanism of plant growth promotion and induced systemic resistance to tobacco mosaic virus by Bacillus spp.[J]. Journal of Microbiology and Biotechnology, 2009, 19(10):1250-1258.
    [11] ZHANG SA, REDDY MS, KLOEPPER JW. Tobacco growth enhancement and blue mold disease protection by rhizobacteria:relationship between plant growth promotion and systemic disease protection by PGPR strain 90-166[J]. Plant and Soil, 2004, 262(1):277-288.
    [12] 李想, 刘艳霞, 夏范讲, 蔡刘体, 张恒, 石俊雄. 烟草根际促生菌(PGPR)的筛选、鉴定及促生机理研究[J]. 中国烟草学报, 2017, 23(3):111-118. LI X, LIU YX, XIA FJ, CAI LT, ZHANG H, SHI JX. Screening, identification and plant growth-promotion mechanism of tobacco plants rhizobacteria[J]. Acta Tabacaria Sinica, 2017, 23(3):111-118(in Chinese).
    [13] 赵斌, 何绍江. 微生物学实验[M]. 北京:科学出版社, 2002. ZHAO B, HE SJ. Microbiology Experiment[M]. Beijing:Science Press, 2002(in Chinese).
    [14] ENGELBRECHT MC. Modification of a semi-selective medium for the isolation and quantification of Pseudomonas solanacearum[J]. ACIAR Bacterial Wilt Newsletter, 1994(10):3-5.
    [15] 李想, 刘艳霞, 蔡刘体, 张恒, 石俊雄. 烟草青枯病菌在烟草根际的定殖及最适发病条件[J]. 植物保护学报, 2016, 43(5):796-804. LI X, LIU YX, CAI LT, ZHANG H, SHI JX. Colonization of Ralstonia solanacearum on tobacco roots and factors affecting virulence[J]. Journal of Plant Protection, 2016, 43(5):796-804(in Chinese).
    [16] LI X, LIU Y, CAI L, ZHANG H, SHI J, YUAN Y. Factors affecting the virulence of Ralstonia solanacearum and its colonization on tobacco roots[J]. Plant Pathology, 2017, 66(8):1345-1356.
    [17] LIU YX, LI X, CAI K, CAI LT, LU N, SHI JX. Identification of benzoic acid and 3-phenylpropanoic acid in tobacco root exudates and their role in the growth of rhizosphere microorganisms[J]. Applied Soil Ecology, 2015, 93:78-87.
    [18] LEVINS R. Evolution in Changing Environments:Some Theoretical Explorations[M]. Princeton, NJ:Princeton University Press, 1968.
    [19] BELL T, LILLEY AK, HECTOR A, SCHMID B, KING L, NEWMAN JA. A linear model method for biodiversity-ecosystem functioning experiments[J]. The American Naturalist, 2009, 174(6):836-849.
    [20] HU J, WEI Z, FRIMAN VP, GU SH, WANG XF, EISENHAUER N, YANG TJ, MA J, SHEN QR, XU YC, JOUSSET A. Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression[J]. mBio, 2016, 7(6):e01790-e01716.
    [21] van ELSAS JD, CHIURAZZI M, MALLON CA, ELHOTTOVĀ D, KRIŠTŮFEK V, SALLES JF. Microbial diversity determines the invasion of soil by a bacterial pathogen[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(4):1159-1164.
    [22] JI PS, WILSON M. Assessment of the importance of similarity in carbon source utilization profiles between the biological control agent and the pathogen in biological control of bacterial speck of tomato[J]. Applied and Environmental Microbiology, 2002, 68(9):4383-4389.
    [23] 王岁楼. 微生物比生长速率μ的含义[J]. 郑州轻工业学院学报, 1993, 8(4):6-9. WANG SL. Meaning on specific growth rate of microorganism[J]. Journal of Zhengzhou Institute of Light Industry, 1993, 8(4):6-9(in Chinese).
    [24] GB/T 23222-2008, 烟草病虫害分组及调查方法[S]. 北京, 中国标准出版社, 2009. GB/T 23222-2008, Tobacco disease and insect pest grouping and investigation methods. Beijing, China Standard Press, 2009(in Chinese).
    [25] 刘艳霞, 李想, 曹毅, 陆宁, 石俊雄. 抑制烟草青枯病型生物有机肥的田间防效研究[J]. 植物营养与肥料学报, 2014, 20(5):1203-1211. LIU YX, LI X, CAO Y, LU N, SHI JX. Field control efficiency of tobacco specific bio-organic fertilizer on tobacco bacterial wilt[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(5):1203-1211(in Chinese).
    [26] ZAIDI A, AHMAD E, KHAN MS, SAIF S, RIZVI A. Role of plant growth promoting rhizobacteria in sustainable production of vegetables:current perspective[J]. Scientia Horticulturae, 2015, 193:231-239.
    [27] TAGHAVI S, BARAC T, GREENBERG B, BORREMANS B, VANGRONSVELD J, van der LELIE D. Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene[J]. Applied and Environmental Microbiology, 2005, 71(12):8500-8505.
    [28] GUO JH, QI HY, GUO YH, GE HL, GONG LY, ZHANG LX, SUN PH. Biocontrol of tomato wilt by plant growth-promoting rhizobacteria[J]. Biological Control, 2004, 29(1):66-72.
    [29] 高欣欣, 于会泳, 张继光, 刘帅帅, 时鹏, 王树键, 申国明. 烤烟根系分泌物的分离鉴定及对种子萌发的影响[J]. 中国烟草科学, 2012, 33(3):87-91. GAO XX, YU HY, ZHANG JG, LIU SS, SHI P, WANG SJ, SHEN GM. Identification of chemical compositions of root exudates from flue-cured tobacco and their influence to seed germination[J]. Chinese Tobacco Science, 2012, 33(3):87-91(in Chinese).
    [30] 邱文龙. 不同品种烟草根系分泌物的组分分析与抗黑胫病的关系[D]. 泰安:山东农业大学硕士学位论文, 2014. QIU WL. Researches on the relationship between root exudates of different flue-cured tobacco varieties and resistant of black shank disease (Phytophora parasitica var. nicotiana)[D]. Taian:Master's Thesis of Shandong Agricultural University, 2014(in Chinese).
    [31] 郝文雅, 沈其荣, 冉炜, 徐阳春, 任丽轩. 西瓜和水稻根系分泌物中糖和氨基酸对西瓜枯萎病病原菌生长的影响[J]. 南京农业大学学报, 2011, 34(3):77-82. HAO WY, SHEN QR, RAN W, XU YC, REN LX. The effects of sugars and amino acids in watermelon and rice root exudates on the growth of Fusarium oxysporum f. sp. niveum[J]. Journal of Nanjing Agricultural University, 2011, 34(3):77-82(in Chinese).
    [32] 刘艳霞, 沈宏, 李想, 张恒, 邹焱, 朱经伟, 向阳. 烟草青枯病劳尔氏菌与拮抗菌对根系分泌物的竞争作用[J]. 微生物学报, 2020, 60(2):333-348. LIU YX, SHEN H, LI X, ZHANG H, ZOU Y, ZHU JW, XIANG Y. Competitive use of plant root exudates by Ralstonia solanacearum causing tobacco bacterial wilt and its antagonistic bacterium LX4[J]. Acta Microbiologica Sinica, 2020, 60(2):333-348(in Chinese).
    [33] KIM BS, FRENCH E, CALDWELL D, HARRINGTON EJ, IYER-PASCUZZI AS. Bacterial wilt disease:host resistance and pathogen virulence mechanisms[J]. Physiological and Molecular Plant Pathology, 2016, 95:37-43.
    [34] WEI Z, YANG TJ, FRIMAN VP, XU YC, SHEN QR, JOUSSET A. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health[J]. Nature Communications, 2015, 6:8413.
    [35] COYTE KZ, SCHLUTER J, FOSTER KR. The ecology of the microbiome:networks, competition, and stability[J]. Science, 2015, 350(6261):663-666.
    [36] MALLON CA, POLY F, LE ROUX X, MARRING I, van ELSAS JD, SALLES JF. Resource pulses can alleviate the biodiversity-invasion relationship in soil microbial communities[J]. Ecology, 2015, 96(4):915-926.
    [37] SALLES JF, POLY F, SCHMID B, LE ROUX X. Community niche predicts the functioning of denitrifying bacterial assemblages[J]. Ecology, 2009, 90(12):3324-3332.
    [38] MALLON CA, LE ROUX X, van DOORN GS, DINI-ANDREOTE F, POLY F, SALLES JF. The impact of failure:unsuccessful bacterial invasions steer the soil microbial community away from the invader's niche[J]. The ISME Journal, 2018, 12(3):728-741.
    [39] BERENDSEN RL, PIETERSE CMJ, BAKKER PAHM. The rhizosphere microbiome and plant health[J]. Trends in Plant Science, 2012, 17(8):478-486.
    [40] WEI Z, GU YA, FRIMAN VP, KOWALCHUK GA, XU YC, SHEN QR, JOUSSET A. Initial soil microbiome composition and functioning predetermine future plant health[J]. Science Advances, 2019, 5(9):eaaw0759.
    [41] FOSTER KR, BELL T. Competition, not cooperation, dominates interactions among culturable microbial species[J]. Current Biology, 2012, 22(19):1845-1850.
    [42] BARBER JN, SEZMIS AL, WOODS LC, ANDERSON TD, VOSS JM, MCDONALD MJ. The evolution of coexistence from competition in experimental co-cultures of Escherichia coli and Saccharomyces cerevisiae[J]. The ISME Journal, 2021, 15(3):746-761.
    [43] HU J, WEI Z, WEIDNER S, FRIMAN VP, XU YC, SHEN QR, JOUSSET A. Probiotic Pseudomonas communities enhance plant growth and nutrient assimilation via diversity-mediated ecosystem functioning[J]. Soil Biology and Biochemistry, 2017, 113:122-129.
    [44] LI M, WEI Z, WANG JN, JOUSSET A, FRIMAN VP, XU YC, SHEN QR, POMMIER T. Facilitation promotes invasions in plant-associated microbial communities[J]. Ecology Letters, 2019, 22(1):149-158.
    [45] WANG XF, WEI Z, LI M, WANG XQ, SHAN AQ, MEI XL, JOUSSET A, SHEN QR, XU YC, FRIMAN VP. Parasites and competitors suppress bacterial pathogen synergistically due to evolutionary trade-offs[J]. Evolution, 2017, 71(3):733-746.
    [46] LAWRENCE D, FIEGNA F, BEHRENDS V, BUNDY JG, PHILLIMORE AB, BELL T, BARRACLOUGH TG. Species interactions alter evolutionary responses to a novel environment[J]. PLoS Biology, 2012, 10(5):e1001330.
    [47] LI M, POMMIER T, YIN Y, WANG JN, GU SH, JOUSSET A, KEUSKAMP J, WANG HG, WEI Z, XU YC, SHEN QR, KOWALCHUK GA. Indirect reduction of Ralstonia solanacearum via pathogen helper inhibition[J]. The ISME Journal, 2022, 16(3):868-875.
    [48] SENEVIRATNE G, WEERASEKARA MLMAW, SENEVIRATNE KACN, ZAVAHIR JS, KECSKÉS ML, KENNEDY IR. Importance of biofilm formation in plant growth promoting rhizobacterial action[A]//Plant Growth and Health Promoting Bacteria[M]. Berlin, Heidelberg:Springer Berlin Heidelberg, 2010:81-95.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘艳霞,陶正朋,李想,张恒,朱经伟,王丰,焦剑,王克敏,徐健,汪维维,李寒. 抗青枯病型根际促生菌(PGPR)菌群构建及其生物防控机制[J]. 微生物学报, 2023, 63(3): 1099-1114

复制
分享
文章指标
  • 点击次数:442
  • 下载次数: 1244
  • HTML阅读次数: 811
  • 引用次数: 0
历史
  • 收稿日期:2022-07-15
  • 录用日期:2022-10-25
  • 在线发布日期: 2023-03-08
  • 出版日期: 2023-03-04
文章二维码