土壤理化性质驱动烤烟根际细菌群落的组配及其共现性网络互作
作者:
基金项目:

中国烟草总公司重大专项项目(11202101047LS-07);中国烟草总公司四川省公司科技专项项目(SCYC202010,SCYC202114);中国博士后科学基金资助项目(2021M702707);重庆市博士后科学基金项目(cstc2021jcyj-bshX0197);广东省烟草专卖局科技项目(2021440000240161)


Soil properties affect bacterial community assembly and co-occurrence network in tobacco rhizosphere
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [55]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】解析土壤微生物在植物根际的组配机制对于认识和维护农田生态系统的稳定性至关重要。【方法】通过Illumina高通量测序和生物信息学分析方法明确了我国主要种植烟草生态区烤烟根际土壤细菌群落与土壤理化性质的互作关系。【结果】烤烟根际细菌类群主要为放线菌纲(Actinobacteria)、α-变形菌纲(Alphaproteobacteria)、γ-变形菌纲(Gammaproteobacteria)和嗜热油菌纲(Thermoleophilia)。细菌群落组成按生态区聚类,且样本空间距离和细菌群落相似度显著负相关。共现性网络分析表明,烤烟根际细菌群落间协同作用大于拮抗作用,武陵秦巴生态区、黄淮平原生态区、南岭丘陵生态区和沂蒙丘陵生态区细菌群落高度模块化,小单胞菌属(Micromonospora)为南岭丘陵生态区和黄淮生态区细菌共现性网络的网络中心,Bryobacter和气单胞菌属(Arenimonas)为南岭丘陵生态区细菌网络的模块核心,其菌群特性而非相对丰度决定了其在稳定细菌网络中的重要作用。冗余分析结果证实pH、有效铁、交换性镁和有效锰能显著影响烤烟根际细菌群落结构。【结论】烤烟根际细菌群落在pH、有效铁、交换性镁和有效锰等土壤理化性质驱动下呈现出均质化和生境特异性的特点,小单胞菌属、Bryobacter和气单胞菌属在烤烟根际细菌群落中发挥重要作用。

    Abstract:

    [ Objective] To understand the contribution of microbial community assembly in plant rhizosphere to the stability of farmland ecosystem. [ Method s] High-throughput sequencing and bioinformatics tools were employed to explore the relationship between the bacterial community in tobacco rhizosphere and soil properties in the eight major tobacco-planting ecotopes in China. [ Result s] The most abundant bacterial classes were Actinobacteria, Alphaproteobacteria, Gammaproteobacteria, and Thermoleophilia. The composition of bacterial community presented a clustering pattern according to ecotopes, and the similarity of bacterial community among samples had a significantly negative correlation with spatial distance. The co-occurrence network of bacterial interactions indicated a higher proportion of positive links than that of negative links between bacteria. The network of Wuling-Qinba mountains (WQM), Huanghuai plain (HHP), Nanling hills (NLH), and Yimeng hills (YMH) presented high modularity. Micromonospora as the network hub in NLH and HHP contributed to the stability of microbial network. Bryobacter and Arenimonas were identified as module hubs in NLH and their characteristics rather than relative abundance determined their role in stabilizing bacterial co-occurrence network. The results of redundancy analysis showed that pH, available iron (availFe), exchangeable magnesium (exchMg), and available manganese (availMn) remarkably affected the bacterial community assembly in tobacco rhizosphere. [ Conclusion ] The homogenization and habitat specificity of bacterial community assembly in tobacco rhizosphere were affected by soil pH, availFe, exchMg, and availMn. Micromonospora, Bryobacter, and Arenimonas played an important role in the bacterial community of tobacco rhizosphere.

    参考文献
    [1] WEI Z, FRIMAN VP, POMMIER T, GEISEN S, JOUSSET A, SHEN QR. Rhizosphere immunity:targeting the underground for sustainable plant health management[J]. Frontiers of Agricultural Science and Engineering, 2020, 7(3):317.
    [2] BAKKER PAHM, BERENDSEN RL, van PELT JA, VISMANS G, YU K, LI EQ, van BENTUM S, POPPELIERS SWM, GIL JJS, ZHANG H, GOOSSENS P, STRINGLIS IA, SONG Y, de JONGE R, PIETERSE CMJ. The soil-borne identity and microbiome-assisted agriculture:looking back to the future[J]. Molecular Plant, 2020, 13(10):1394-1401.
    [3] VANDENKOORNHUYSE P, QUAISER A, DUHAMEL M, van AL, DUFRESNE A. The importance of the microbiome of the plant holobiont[J]. The New Phytologist, 2015, 206(4):1196-1206.
    [4] ZHANG J, COAKER G, ZHOU JM, DONG XN. Plant immune mechanisms:from reductionistic to holistic points of view[J]. Molecular Plant, 2020, 13(10):1358-1378.
    [5] WANG LK, LI XF. Steering soil microbiome to enhance soil system resilience[J]. Critical Reviews in Microbiology, 2019, 45(5/6):743-753.
    [6] LEE SM, KONG HG, SONG GC, RYU CM. Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease[J]. The ISME Journal, 2021, 15(1):330-347.
    [7] QI ZH, ZHOU X, TIAN L, ZHANG HY, CAI L, TANG F. Temporal and spatial variation of microbial communities in stored rice grains from two major depots in China[J]. Food Research International, 2022, 152:110876.
    [8] NIU B, PAULSON JN, ZHENG XQ, KOLTER R. Simplified and representative bacterial community of maize roots[J]. Proceedings of National Academy of Sciences of the United States of America, 2017, 114(12):e2450-2459.
    [9] DESANTIS TZ, HUGENHOLTZ P, LARSEN N, ROJAS M, BRODIE EL, KELLER K, HUBER T, DALEVI D, HU P, ANDERSEN GL. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB[J]. Scientific Reports, 2006, 72(7):5069-5072.
    [10] ZHAO ML, ZHAO J, YUAN J, HALE L, WEN T, HUANG QW, VIVANCO JM, ZHOU JZ, KOWALCHUK GA, SHEN QR. Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth[J]. Plant, Cell & Environment, 2021, 44(2):613-628.
    [11] ZHAO J, NI T, LI Y, XIONG W, RAN W, SHEN B, SHEN QR, ZHANG RF. Responses of bacterial communities in arable soils in a rice-wheat cropping system to different fertilizer regimes and sampling times[J]. PLoS One, 2014, 9(1):e85301.
    [12] HALLIN S, JONES CM, SCHLOTER M, PHILIPPOT L. Relationship between N-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment[J]. The ISME Journal, 2009, 3(5):597-605.
    [13] 曹静, 程晓钰, 曾智霖, 杨梓琪, 刘晓燕, 王红梅, 马丽媛, 鲁小璐, 苏春田, 黄奇波. 广西桂林新村屯洞穴细菌群落的生境特异性及网络分析[J]. 科学通报, 2021, 66(31):4003-4016. CAO J, CHENG XY, ZENG ZL, YANG ZQ, LIU XY, WANG HM, MA LY, LU XL, SU CT, HUANG QB. Habitat specificity and co-occurrence network of bacterial communities in the Xincuntun Cave, Guilin, Guangxi[J]. Chinese Science Bulletin, 2021, 66(31):4003-4016(in Chinese).
    [14] 滕凯, 陈前锋, 周志成, 向青松, 张敏, 尹华群, 刘勇军. 烟草连作障碍与土壤理化性质及微生物多样性特征的关联[J]. 微生物学通报, 2020, 47(9):2848-2856. TENG K, CHEN QF, ZHOU ZC, XIANG QS, ZHANG M, YIN HQ, LIU YJ. Effect of soil physical and chemical properties and microbial community on continuous cropping obstacles in tobacco field[J]. Microbiology China, 2020, 47(9):2848-2856(in Chinese).
    [15] 胡婵娟, 刘国华, 郭雷, 刘宇. 土壤侵蚀对土壤理化性质及土壤微生物的影响[J]. 干旱区研究, 2014, 31(4):702-708. HU CJ, LIU GH, GUO L, LIU Y. Effects of soil erosion on soil physicochemical properties and soil microorganisms[J]. Arid Zone Research, 2014, 31(4):702-708(in Chinese).
    [16] 江其朋, 江连强, 龚杰, 余佳敏, 杨橙, 刘东阳, 王金峰, 陈树鸿, 李石力, 杜娟, 丁伟, 王勇. 影响四川凉山地区烟草根结线虫病发生的关键因子分析[J]. 中国烟草学报, 2021, 27(6):89-98. JIANG QP, JIANG LQ, GONG J, YU JM, YANG C, LIU DY, WANG JF, CHEN SH, LI SL, DU J, DING W, WANG Y. Exploring the key factors causing the outbreak of tobacco root-knot nematodes in Liangshan prefecture of Sichuan Province[J]. Acta Tabacaria Sinica, 2021, 27(6):89-98(in Chinese).
    [17] 余晶晶, 蔡君兰, 郭吉兆, 刘克建, 赵晓东, 秦亚琼, 潘立宁, 王宜鹏, 杨松, 刘绍锋, 姬厚伟, 邹西梅, 刘剑, 张晓兵, 王冰. 烟叶类型、部位及生态区对总粒相物中主要有机酸释放量的影响[J]. 中国烟草学报, 2020, 26(2):1-7, 23. YU JJ, CAI JL, GUO JZ, LIU KJ, ZHAO XD, QIN YQ, PAN LN, WANG YP, YANG S, LIU SF, JI HW, ZOU XM, LIU J, ZHANG XB, WANG B. Effects of tobacco types, positions and ecological regions on release of main organic acids in total particulate matter[J]. Acta Tabacaria Sinica, 2020, 26(2):1-7, 23(in Chinese).
    [18] 鲍士旦. 土壤农化分析[M]. 3版. 北京:中国农业出版社, 2000. BAO SD. Soil and Agricultural Chemistry Analysis[M]. The third edition. Beijing:Chinese Agriculture Press, 2000(in Chinese).
    [19] SHU DT, YUE H, HE YL, WEI GH. Divergent assemblage patterns of abundant and rare microbial sub-communities in response to inorganic carbon stresses in a simultaneous anammox and denitrification (SAD) system[J]. Bioresource Technology, 2018, 257:249-259.
    [20] MAGOČ T, SALZBERG SL. FLASH:fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics:Oxford, England, 2011, 27(21):2957-2963.
    [21] SHETTY SA, HUGENHOLTZ F, LAHTI L, SMIDT H, de vos WM. Intestinal microbiome landscaping:insight in community assemblage and implications for microbial modulation strategies[J]. FEMS Microbiol Rev, 2017, 41(2):182-199.
    [22] ZHOU JZ, DENG Y, LUO F, HE ZL, YANG YF. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2[J]. mBio, 2011, 2(4):e00122-e00111.
    [23] DENG Y, JIANG YH, YANG YF, HE ZL, LUO F, ZHOU JZ. Molecular ecological network analyses[J]. BMC Bioinformatics, 2012, 13:113.
    [24] KANG YL, AN XR, MA YW, ZENG SM, JIANG ST, WU WL, XIE CY, WANG ZH, DONG CX, XU YC, SHEN QR. Organic amendments alleviate early defoliation and increase fruit yield by altering assembly patterns and of microbial communities and enzymatic activities in sandy pear (Pyrus pyrifolia)[J]. AMB Express, 2021, 11(1):164.
    [25] CHEN Y, BONKOWSKI M, SHEN Y, GRIFFITHS BS, JIANG YJ, WANG XY, SUN B. Root ethylene mediates rhizosphere microbial community reconstruction when chemically detecting cyanide produced by neighbouring plants[J]. Microbiome, 2020, 8(1):4.
    [26] de SOUZA RS, OKURA VK, ARMANHI JS, JORRÍN B, LOZANO N, da SILVA MJ, GONZÁLEZ-GUERRERO M, de ARAÚJO LM, VERZA NC, BAGHERI HC, IMPERIAL J, ARRUDA P. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome[J]. Scientific Reports, 2016, 6:28774.
    [27] HAMONTS K, TRIVEDI P, GARG A, JANITZ C, GRINYER J, HOLFORD P, BOTHA FC, ANDERSON IC, SINGH BK. Field study reveals core plant microbiota and relative importance of their drivers[J]. Environmental Microbiology, 2018, 20(1):124-140.
    [28] ZARRAONAINDIA I, OWENS SM, WEISENHORN P, WEST K, HAMPTON-MARCELL J, LAX S, BOKULICH NA, MILLS DA, MARTIN G, TAGHAVI S, LELIE DVD, GILBERTA JA. The soil microbiome influences grapevine-associated microbiota[J]. mBio, 2015, 6(2):e02527-e02514.
    [29] FONSECA-GARCÍA C, COLEMAN-DERR D, GARRIDO E, VISEL A, TRINGE SG, PARTIDA-MARTÍNEZ LP. The cacti microbiome:interplay between habitat-filtering and host-specificity[J]. Frontiers in Microbiology, 2016, 7:150.
    [30] COLEMAN-DERR D, DESGARENNES D, FONSECA-GARCIA C, GROSS S, CLINGENPEEL S, WOYKE T, NORTH G, VISEL A, PARTIDA-MARTINEZ LP, TRINGE SG. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species[J]. The New Phytologist, 2016, 209(2):798-811.
    [31] XU J, ZHANG Y, ZHANG P, TRIVEDI P, RIERA N, WANG Y, LIU X, FAN G, TANG J, COLETTA-FILHO HD, CUBERO J, DENG X, ANCONA V, LU Z, ZHONG B, ROPER MC, CAPOTE N, CATARA V, PIETERSEN G, VERNIÈRE C, et al. The structure and function of the global Citrus rhizosphere microbiome[J]. Nature Communications, 2018, 9:4894.
    [32] DELGADO-BAQUERIZO M, ELDRIDGE DJ, LIU YR, SOKOYA B, WANG JT, HU HW, HE JZ, BASTIDA F, MORENO JL, BAMIGBOYE AR, BLANCO-PASTOR JL, CANO-DÍAZ C, ILLÁN JG, MAKHALANYANE TP, SIEBE C, TRIVEDI P, ZAADY E, VERMA JP, WANG L, WANG J, et al. Global homogenization of the structure and function in the soil microbiome of urban greenspaces[J]. Science Advances, 2021, 7(28):eabg5809.
    [33] SPAIN AM, KRUMHOLZ LR, ELSHAHED MS. Abundance, composition, diversity and novelty of soil Proteobacteria[J]. The ISME Journal, 2009, 3(8):992-1000.
    [34] JANSSEN PH. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes[J]. Applied and Environmental Microbiology, 2006, 72(3):1719-1728.
    [35] PANG ZQ, CHEN J, WANG TH, GAO CS, LI ZM, GUO LT, XU JP, CHENG Y. Linking plant secondary metabolites and plant microbiomes:a review[J]. Frontiers in Plant Science, 2021, 12:621276.
    [36] 沈建平, 舒勤静, 李小龙, 张明宇, 李红丽, 王岩. 烟稻轮作对烟草根际土壤微生物区系及青枯病发生的影响[J]. 云南农业科技, 2021(6):50-54. SHEN JP, SHU QJ, LI XL, ZHANG MY, LI HL, WANG Y. Effects of tobacco-rice rotation on tobacco rhizosphere soil microflora and bacterial wilt occurrence[J]. Yunnan Agricultural Science and Technology, 2021(6):50-54(in Chinese).
    [37] GUSEVA K, DARCY S, SIMON E, ALTEIO LV, MONTESINOS-NAVARRO A, KAISER C. From diversity to complexity:microbial networks in soils[J]. Soil Biology and Biochemistry, 2022, 169:108604.
    [38] GOBERNA M, VERDÚ M. Cautionary notes on the use of co-occurrence networks in soil ecology[J]. Soil Biology and Biochemistry, 2022, 166:108534.
    [39] GÄRTNER A, WIESE J, IMHOFF JF. Diversity of Micromonospora strains from the deep Mediterranean Sea and their potential to produce bioactive compounds[J]. AIMS Microbiology, 2016, 2(2):205-221.
    [40] 张学武, 张建丽. 小单孢菌属的分类及应用研究[J]. 微生物学通报, 2006, 33(5):117-121 ZHANG XW, ZHANG JL. Taxonomy and application of Micromonospora[J]. Microbiology, 2006, 33(5):117-121(in Chinese).
    [41] 杨星鹏, 张志斌, 朱笃. 小单胞菌属次级代谢产物及其生物活性研究进展[J]. 天然产物研究与开发, 2019, 31(5):908-915, 921. YANG XP, ZHANG ZB, ZHU D. Review on secondary metabolites and its biological activities from genus Micromonospora[J]. Natural Product Research and Development, 2019, 31(5):908-915, 921(in Chinese).
    [42] NI XP, SUN ZP, GU YW, CUI H, XIA HZ. Assembly of a novel biosynthetic pathway for gentamicin B production in Micromonospora echinospora[J]. Microbial Cell Factories, 2016, 15:1.
    [43] PENG F, WANG CX, XIE Y, JIANG HL, CHEN LJ, URIBE P, BULL AT, GOODFELLOW M, JIANG H, LIAN YY. A new 20-membered macrolide produced by a marine-derived Micromonospora strain[J]. Natural Product Research, 2013, 27(15):1366-1371.
    [44] BULGARELLI D, SCHLAEPPI K, SPAEPEN S, van THEMAAT EVL, SCHULZE-LEFERT P. Structure and functions of the bacterial microbiota of plants[J]. Annual Review of Plant Biology, 2013, 64:807-838.
    [45] KONG HG, SONG GC, SIM HJ, RYU CM. Achieving similar root microbiota composition in neighbouring plants through airborne signalling[J]. The ISME Journal, 2021, 15(2):397-408.
    [46] LEBEIS SL, PAREDES SH, LUNDBERG DS, BREAKFIELD N, GEHRING J, MEDONALD M, MALFATTI S, RIO D TG, JONES CD. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa[J]. Science, 2015, 349(6250):860-864.
    [47] HU L, ROBERT CAM, CADOT S, ZHANG X, YE M, LI B, MANZO D, CHERVET N, STEINGER T, van der HEIJDEN MGA, SCHLAEPPI K, ERB M. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota[J]. Nature Communications, 2018, 9:2738.
    [48] SHEN GH, ZHANG ST, LIU XJ, JIANG QP, DING W. Soil acidification amendments change the rhizosphere bacterial community of tobacco in a bacterial wilt affected field[J]. Applied Microbiology and Biotechnology, 2018, 102(22):9781-9791.
    [49] ZHALNINA K, DIAS R, de QUADROS PD, DAVIS-RICHARDSON A, CAMARGO FAO, CLARK IM, MCGRATH SP, HIRSCH PR, TRIPLETT EW. Soil pH determines microbial diversity and composition in the park grass experiment[J]. Microbial Ecology, 2015, 69(2):395-406.
    [50] ROUSK J, BAATH E, BROOKES PC, LAUBER CL, LOZUPONE C, CAPORASO JG, KNIGHT R, FIERER N. Soil bacterial and fungal communities across a pH gradient in an arable soil[J]. The ISME Journal, 2010, 4(10):1340-1351.
    [51] LI SL, LIU YQ, WANG J, YANG L, ZHANG ST, XU C, DING W. Soil acidification aggravates the occurrence of bacterial wilt in south China[J]. Frontiers in Microbiology, 2017, 8:703.
    [52] 高明, 孙海, 张丽娜, 张亚玉. 铁、锰胁迫对人参叶片某些生理特征的影响[J]. 吉林农业大学学报, 2012, 34(2):130-137. GAO M, SUN H, ZHANG LN, ZHANG YY. Effect of iron and manganese stress on some physiological characters of Panax ginseng blade[J]. Journal of Jilin Agricultural University, 2012, 34(2):130-137(in Chinese).
    [53] 张宝成, 刘云芳, 李应禄, 陈文芳, 李德辉, 钱正敏. 锰胁迫对小飞蓬生长与生理生化特征影响初探[J]. 东北农业科学, 2021, 46(4):110-112, 127. ZHANG BC, LIU YF, LI YL, CHEN WF, LI DH, QIAN ZM. Preliminary study on the effect of manganese stress on the growth and physiological and biochemical characteristics of Conyza canadensis[J]. Journal of Northeast Agricultural Sciences, 2021, 46(4):110-112, 127(in Chinese).
    [54] CORNELIS P. Iron uptake and metabolism in P seudomonads[J]. Applied Microbiology and Biotechnology, 2010, 86(6):1637-1645.
    [55] HUANG XF, CHAPARRO JM, REARDON KF, ZHANG RF, SHEN QR, VIVANCO JM. Rhizosphere interactions:root exudates, microbes, and microbial communities[J]. Botany, 2014, 92(4):267-275.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

江其朋,余佳敏,王金峰,刘东阳,龚杰,江连强,张淑婷,余祥文,李石力,杨亮,刘晓姣,王悦,王勇,丁伟. 土壤理化性质驱动烤烟根际细菌群落的组配及其共现性网络互作[J]. 微生物学报, 2023, 63(3): 1168-1184

复制
分享
文章指标
  • 点击次数:432
  • 下载次数: 1178
  • HTML阅读次数: 637
  • 引用次数: 0
历史
  • 收稿日期:2022-07-20
  • 录用日期:2022-09-27
  • 在线发布日期: 2023-03-08
  • 出版日期: 2023-03-04
文章二维码