雪衣藻Chlamydomonas nivalis适应温度周期性变化的生理响应和分子机制
作者:
基金项目:

国家自然科学基金(91851201)


Physiological responses of Chlamydomonas nivalis to cyclic temperature fluctuation and the adaptation mechanism
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [43]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】雪衣藻(Chlamydomonas nivalis)分布于高山积雪和两极地区,可耐受低温胁迫和温度骤变,其适应温度变化的分子机制目前尚不清楚。【方法】本研究基于温度周期性变化下雪衣藻生理指标的响应规律,选择10个取样点进行转录组测序。运用加权基因共表达网络分析(weighted gene co-expression network analysis,WGCNA)划分得到17个共表达模块,从中找到5个与样品处理显著关联的模块,并对温度骤变的时间点进行基因差异表达分析。最后对筛选得到的基因集进行功能注释分析。【结果】转录组学分析显示,C. nivalis在温度周期变化下基因表达量发生了全局变化,其中果糖和甘露糖代谢通路、淀粉和蔗糖代谢通路、谷胱甘肽代谢通路以及抗坏血酸和醛酸代谢通路中关键酶的编码基因在低温下上调表达。研究还发现在温度周期变化下,C. nivalis中蛋白质质量控制系统、光合作用系统、DNA修复系统相关基因响应温度变化。【结论】本研究为揭示雪衣藻适应温度胁迫的分子机制提供了重要线索,丰富了生物抗逆基因资源库。

    Abstract:

    [Objective] Chlamydomonas nivalis thrives in polar regions and snowfields of high mountains. C. nivalis is characterized by tolerance to cold and drastic temperature fluctuation. However, the mechanism underlying this tolerance is unknown.[Methods] On the basis of physiological responses of C. nivalis to cyclic temperature fluctuation, we selected 10 sampling times for RNA sequencing. The weighted gene co-expression network analysis (WGCNA) yielded 17 modules, and we picked up 5 modules that were significantly associated with the sample treatment. Then we analyzed the differentially expressed genes under cyclic temperature fluctuation. The selected gene sets were analyzed by functional annotation. [Results] The gene expression on C. nivalis remarkably changed under cyclic temperature fluctuation. Genes coding key enzymes in fructose and mannose metabolism, starch and sucrose metabolism, glutathione metabolism, ascorbate and aldehyde acid metabolism pathways were up-regulated at 4℃. We also found that protein quality control system, photosynthesis system, DNA damage and repair system may play important roles in adaptation to temperature fluctuation. [Conclusion] This study provides important clues to unravel the molecular mechanism of C. nivalis in adaptation to temperature stress and enriches stress-resistant gene resources.

    参考文献
    [1] HOHAM RW, DUVAL B, JONES HG, POMEROY JW, WALKER DA, HOHAM RW. Microbial ecology of snow and Freshwater Ice with Emphasis on Snow Algae[M]. Cambridge:Cambridge University Press, 2001.
    [2] WILLIAMS WE, GORTON HL, VOGELMANN TC. Surface gas-exchange processes of snow algae[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(2):562-566.
    [3] HISAKAWA N, QUISTAD SD, HESTER ER, MARTYNOVA D, MAUGHAN H, SALA E, GAVRILO MV, ROHWER F. Metagenomic and satellite analyses of red snow in the Russian Arctic[J]. PeerJ, 2015, 3:e1491.
    [4] CVETKOVSKA M, HÜNER NPA, SMITH DR. Chilling out:the evolution and diversification of psychrophilic algae with a focus on Chlamydomonadales[J]. Polar Biology, 2017, 40(6):1169-1184.
    [5] LUKEŠ M, PROCHÁZKOVÁ L, SHMIDT V, NEDBALOVÁ L, KAFTAN D. Temperature dependence of photosynthesis and thylakoid lipid composition in the red snow alga Chlamydomonas Cf. nivalis (Chlorophyceae)[J]. FEMS Microbiology Ecology, 2014, 89(2):303-315.
    [6] MATSUZAKI R, HARA Y, NOZAKI H. A taxonomic revision of Chloromonas reticulata (Volvocales, Chlorophyceae), the type species of the genus Chloromonas, based on multigene phylogeny and comparative light and electron microscopy[J]. Phycologia, 2012, 51(1):74-85.
    [7] PROCHÁZKOVÁ L, LEYA T, KŘÍŽKOVÁ H, NEDBALOVÁ L. Sanguina nivaloides and Sanguina aurantia gen. et spp. nov. (Chlorophyta):the taxonomy, phylogeny, biogeography and ecology of two newly recognised algae causing red and orange snow[J]. FEMS Microbiology Ecology, 2019, 95(6):fiz064.
    [8] KAWECKA B. Biology and ecology of snow algae 2. Formation of aplanospores in Chlamydomonas nivalis (Bauer) Wille (Chlorophyta, Volvocales)[J]. Acta Hydrobiologica, 1981, 23(3):211-215.
    [9] MOSSER JL, MOSSER AG, BROCK TD. Photosynthesis in the snow:the alga chlamydomonas nivalis (Chlorophyceae)[J]. Journal of Phycology, 1977, 13(1):22-27.
    [10] ZHENG YL, XUE CL, CHEN H, HE CL, WANG Q. Low-temperature adaptation of the snow alga Chlamydomonas nivalis is associated with the photosynthetic system regulatory process[J]. Frontiers in Microbiology, 2020, 11:1233.
    [11] PENG Z, LIU G, HUANG KY. Cold adaptation mechanisms of a snow alga Chlamydomonas nivalis during temperature fluctuations[J]. Frontiers in Microbiology, 2021, 11:611080.
    [12] LICHTENTHALER HK. Chlorophylls and carotenoids:pigments of photosynthetic biomembranes[J]. Methods in Enzymology, 1987, 148:350-382.
    [13] LANGFELDER P, HORVATH S. WGCNA:an R package for weighted correlation network analysis[J]. BMC Bioinformatics, 2008, 9:559.
    [14] SHANNON P, MARKIEL A, OZIER O, BALIGA NS, WANG JT, RAMAGE D, AMIN ND, SCHWIKOWSKI B, IDEKER T. Cytoscape:a software environment for integrated models of biomolecular interaction networks[J]. Genome Research, 2003, 13(11):2498-2504.
    [15] LOVE MI, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12):550.
    [16] KANEHISA M, GOTO S. KEGG:Kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Research, 2000, 28(1):27-30.
    [17] HUERTA-CEPAS J, FORSLUND K, COELHO LP, SZKLARCZYK D, JENSEN LJ, von MERING C, BORK P. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper[J]. Molecular Biology and Evolution, 2017, 34(8):2115-2122.
    [18] THIMM O, BLÄSING O, GIBON Y, NAGEL A, MEYER S, KRÜGER P, SELBIG J, MÜLLER LA, RHEE SY, STITT M. MAPMAN:a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes[J]. The Plant Journal:for Cell and Molecular Biology, 2004, 37(6):914-939.
    [19] YU GC, WANG LG, HAN YY, HE QY. clusterProfiler:an R package for comparing biological themes among gene clusters[J]. Omics:A Journal of Integrative Biology, 2012, 16(5):284-287.
    [20] DEMETRIOU G, NEONAKI C, NAVAKOUDIS E, KOTZABASIS K. Salt stress impact on the molecular structure and function of the photosynthetic apparatus-the protective role of polyamines[J]. Biochimica et Biophysica Acta:BBA-Bioenergetics, 2007, 1767(4):272-280.
    [21] ZHANG YM, CHEN H, HE CL, WANG Q. Nitrogen starvation induced oxidative stress in an oil-producing green alga Chlorella sorokiniana C3[J]. PLoS One, 2013, 8(7):e69225.
    [22] ROSA M, PRADO C, PODAZZA G, INTERDONATO R, GONZÁLEZ JA, HILAL M, PRADO FE. Soluble sugars[J]. Plant Signaling & Behavior, 2009, 4(5):388-393.
    [23] MA YY, ZHANG YL, LU J, SHAO HB. Roles of plant soluble sugars and their responses to plant cold stress[J]. African Journal of Biotechnology, 2009, 8(10):2004-2010.
    [24] ROUX C, GRESH N, PERERA LE, PIQUEMAL JP, SALMON L. Binding of 5-phospho-d-arabinonohydroxamate and 5-phospho-d-arabinonate inhibitors to zinc phosphomannose isomerase from Candida albicans studied by polarizable molecular mechanics and quantum mechanics[J]. Journal of Computational Chemistry, 2007, 28(5):938-957.
    [25] BADEJO AA, ELTELIB HA, FUKUNAGA K, FUJIKAWA Y, ESAKA M. Increase in ascorbate content of transgenic tobacco plants overexpressing the acerola (Malpighia glabra) phosphomannomutase gene[J]. Plant and Cell Physiology, 2009, 50(2):423-428.
    [26] QIAN WQ, YU CM, QIN HJ, LIU X, ZHANG AM, JOHANSEN IE, WANG DW. Molecular and functional analysis of phosphomannomutase (PMM) from higher plants and genetic evidence for the involvement of PMM in ascorbic acid biosynthesis in Arabidopsis and Nicotiana benthamiana[J]. The Plant Journal:for Cell and Molecular Biology, 2007, 49(3):399-413.
    [27] GRANOT D, KELLY G, STEIN O, DAVID-SCHWARTZ R. Substantial roles of hexokinase and fructokinase in the effects of sugars on plant physiology and development[J]. Journal of Experimental Botany, 2013, 65(3):809-819.
    [28] BLÁZQUEZ MA, SANTOS E, FLORES CL, MARTÍNEZ-ZAPATER JM, SALINAS J, GANCEDO C. Isolation and molecular characterization of the Arabidopsis TPS1 gene, encoding trehalose-6-phosphate synthase[J]. The Plant Journal:for Cell and Molecular Biology, 1998, 13(5):685-689.
    [29] VOGEL G, AESCHBACHER RA, MÜLLER J, BOLLER T, WIEMKEN A. Trehalose-6-phosphate phosphatases from Arabidopsis thaliana:identification by functional complementation of the yeast tps2 mutant[J]. The Plant Journal:for Cell and Molecular Biology, 1998, 13(5):673-683.
    [30] WANG L, CUI N, ZHANG KY, FAN HY, LI TL. Research advance of sucrose phosphate synthase (SPS) in higher plant[J]. International Journal of Agriculture and Biology, 2013, 15(6):1221-1226.
    [31] MAY MJ, VERNOUX T, LEAVER C, MONTAGU MV, INZÉ D. Glutathione homeostasis in plants:implications for environmental sensing and plant development[J]. Journal of Experimental Botany, 1998, 49(321):649-667.
    [32] GÉRARD-MONNIER D, CHAUDIERE J. Metabolism and antioxidant function of glutathione[J]. Pathologie-biologie, 1996, 44(1):77-85.
    [33] GALLIE DR. l-ascorbic acid:a multifunctional molecule supporting plant growth and development[J]. Scientifica, 2013, 2013:795964.
    [34] 王翠, 兰海燕. 植物bHLH转录因子在非生物胁迫中的功能研究进展[J]. 生命科学研究, 2016, 20(4):358-364. WANG C, LAN HY. Research progresses on functions of plant bHLH transcription factors involved in abiotic stresses[J]. Life Science Research, 2016, 20(4):358-364(in Chinese).
    [35] SHUTOV AD, KAKHOVSKAIA IA. Evolution of seed storage globulins and cupin superfamily[J]. Molekuliarnaia Biologiia, 2011, 45(4):579-585.
    [36] ROY S. Maintenance of genome stability in plants:repairing DNA double strand breaks and chromatin structure stability[J]. Frontiers in Plant Science, 2014, 5:487.
    [37] HASHIMOTO H, URAGAMI C, COGDELL RJ. Carotenoids and photosynthesis[J]. Sub-Cellular Biochemistry, 2016, 79:111-139.
    [38] HAVAUX M. Carotenoids as membrane stabilizers in chloroplasts[J]. Trends in Plant Science, 1998, 3(4):147-151.
    [39] RAMEL F, BIRTIC S, GINIES C, SOUBIGOU-TACONNAT L, TRIANTAPHYLIDÈS C, HAVAUX M. Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants[J]. PNAS, 2012, 109(14):5535-5540.
    [40] YONG YYR, LEE YK. Do carotenoids play a photoprotective role in the cytoplasm of Haematococcus lacustris (Chlorophyta)?[J]. Phycologia, 1991, 30(3):257-261.
    [41] JANG IC, OH SJ, SEO JS, CHOI WB, SONG SI, KIM CH, KIM YS, SEO HS, CHOI YD, NAHM BH, KIM JK. Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth[J]. Plant Physiology, 2003, 131(2):516-524.
    [42] GALLIE DR. The role of l-ascorbic acid recycling in responding to environmental stress and in promoting plant growth[J]. Journal of Experimental Botany, 2012, 64(2):433-443.
    [43] XIA ZL, XU ZW, WEI YY, WANG MP. Overexpression of the maize sulfite oxidase increases sulfate and GSH levels and enhances drought tolerance in transgenic tobacco[J]. Frontiers in Plant Science, 2018, 9:298.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王薪雅,彭钊,刘盖,黄开耀. 雪衣藻Chlamydomonas nivalis适应温度周期性变化的生理响应和分子机制[J]. 微生物学报, 2023, 63(3): 1185-1203

复制
分享
文章指标
  • 点击次数:252
  • 下载次数: 1111
  • HTML阅读次数: 974
  • 引用次数: 0
历史
  • 收稿日期:2022-07-20
  • 录用日期:2022-09-13
  • 在线发布日期: 2023-03-08
  • 出版日期: 2023-03-04
文章二维码