氮磷比对有机磷环境中微藻砷代谢的生态风险效应
作者:
基金项目:

国家自然科学基金(42177384);福建省自然科学基金(2020J01804);福建省高校产学合作项目(2022N5002)


Effect of N/P ratio on ecological risk of arsenic metabolism of microalgae in the presence of organic phosphorus
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    【目的】探究了以单酯磷d-葡萄糖-6-磷酸二钠(d-glucose-6-disodium phosphate,GP)为唯一磷源时含砷(As5+)水体中不同氮磷质量比对铜绿微囊藻(Microcystis aeruginosa)生长及砷代谢和微囊藻毒素(microcystins,MCs)释出的影响。【方法】将氮磷饥饿状态的藻细胞于含砷水体中不同氮磷比条件下进行实验,通过测定藻细胞密度(OD680)、叶绿素a (chlorophyll a,Chla)、实际光合产率(Yield)、超氧化物歧化酶(superoxide dismutase,SOD)、砷的存在形态以及微囊藻毒素含量,分析该藻在砷胁迫下的生理响应以及砷代谢机制。【结果】氮磷饥饿状态藻细胞对较高GP水平(0.1 mg/L)下的低氮磷比有更好的适应性,较低GP水平(0.02 mg/L)下的高氮磷比能显著促进培养初期藻细胞的OD680、Chla和Yield;SOD在培养初期与末期受氮磷比影响显著。GP环境下铜绿微囊藻经8 d培养后氮磷比为10:0.1介质中的砷表现为以亚砷酸盐(As3+)为主,占水体总砷(total arsenic,TAs)含量的78.8%,其余氮磷比环境中仍以As5+为主,藻体砷形态则均以As5+为主,氮磷比为1:0.1时有机砷占藻体TAs比例最高。藻细胞砷代谢受GP水平影响显著,较高GP环境(0.1 mg/L)下砷的代谢总量也更高,氮磷比为10:0.1时砷代谢以As5+的还原和As3+释出为主,低GP环境下(0.02 mg/L)砷代谢的甲基化水平提高。介质中MCs的含量与GP水平有关,较高GP的低氮磷比水体中MCs含量最低。【结论】研究结果对全面了解有机磷源含砷水体中藻华暴发及砷生态风险的科学管控具有重要意义。

    Abstract:

    [Objective] To explore the effect nitrogen/phosphorus (N/P) ratio on growth, arsenic (As) metabolism, and microcystins (MCs) release of Microcystis aeruginosa in arsenate (As5+)-polluted water when d-glucose-6-disodium phosphate (GP) was the only phosphorus source. [Methods] The experiment was carried out on N- and P-starved algal cells in As-containing water with different N/P ratios. The algal cell density (OD680), chlorophyll a (Chla), actual photosynthetic yield (Yield), superoxide dismutase (SOD) activity, and the content of As species and MCs were measured. Thereby, the physiological response of M. aeruginosa to As stress and the metabolic pathways of As were analyzed. [Results] The N- and P-starved algal cells can well adapt to the low N/P ratio in the case of high GP level (0.1 mg/L), and high N/P ratio in the instance of low GP level (0.02 mg/L) can significant improve the OD680, Chla, and Yield of the algal cells in the early stage of culture. The effect of N/P ratio on SOD activity was more significant at the beginning and end of culture. After 8 days of culture, arsenite (As3+) changed into the dominant As species in the medium with N/P ratio of 10:0.1, which made up 78.8% of the total As (TAs) in the water, but As5+ was still the main As species in the media with other N/P ratios. Meanwhile, As5+ was the dominant As species in algal cells for different N/P ratios, and in the case of N/P ratio at 1:0.1, the proportion of organic As in TAs in algal cells was the largest. As5+ metabolism in M. aeruginosa cells was significantly affected by GP level, and the high amount of metabolized As per cell was found in the instance of high GP level (0.1 mg/L). In the case of N/P ratio of 10:0.1, As metabolism was dominated by the reduction of As5+ and the release of As3+, and methylation level of As was elevated in the case of low GP level (0.02 mg/L). The concentration of MCs in the medium was related to GP level and the concentration was the lowest in the case of low N/P ratio and high GP level. [Conclusion] The results are of great significance for comprehensive understanding of harmful algal blooms and scientific management of As in As-polluted water under organic phosphorus conditions.

    参考文献
    [1] 傅丛, 姜英, 白向飞. 燃煤砷危害及相关标准中砷含量限值指标探讨[J]. 煤质技术, 2009(6):39-42. FU C, JIANG Y, BAI XF. Discussion on arsenic pollution from coal combustion and the limits of arsenic content in relative standards[J]. Coal Quality Technology, 2009(6):39-42(in Chinese).
    [2] SMEDLEY PL, KINNIBURGH DG. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry, 2002, 17(5):517-568.
    [3] 陈玲, 贾敏, 何若男, 余静, 吴兵. 砷和二氯乙酰胺联合暴露下斑马鱼脏器富集及毒性的性别二态性研究[J]. 环境科学学报, 2021, 41(8):3384-3393. CHEN L, JIA M, HE RN, YU J, WU B. The sex dimorphism in accumulation and combined toxicity of arsenic and dichloroacetamide in adult zebrafish[J]. Acta Scientiae Circumstantiae, 2021, 41(8):3384-3393(in Chinese).
    [4] 卢璇, 王云燕, 瞿才燕, 唐溪, 唐崇俭. 水体硝化体系中砷的解毒机制探讨[J]. 微生物学报, 2022, 62(6):2212-2225. LU X, WANG YY, QU CY, TANG X, TANG CJ. Detoxification mechanisms of arsenic in nitrification in water systems[J]. Acta Microbiologica Sinica, 2022, 62(6):2212-2225(in Chinese).
    [5] BROOKS BW, LAZORCHAK JM, HOWARD MDA, JOHNSON MV V, MORTON SL, PERKINS DAK, REAVIE ED, SCOTT GI, SMITH SA, STEEVENS JA. Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems?[J]. Environmental Toxicology and Chemistry, 2016, 35(1):6-13.
    [6] RAHMAN S, KIM KH, SAHA SK, SWARAZ AM, PAUL DK. Review of remediation techniques for arsenic (As) contamination:a novel approach utilizing bio-organisms[J]. Journal of Environmental Management, 2014, 134:175-185.
    [7] AZIZUR RAHMAN M, HASEGAWA H. Arsenic in freshwater systems:influence of eutrophication on occurrence, distribution, speciation, and bioaccumulation[J]. Applied Geochemistry, 2012, 27(1):304-314.
    [8] YUAN HZ, TAI ZQ, LI Q, LIU EF. In-situ, high-resolution evidence from water-sediment interface for significant role of iron bound phosphorus in eutrophic lake[J]. Science of the Total Environment, 2020, 706:136040.
    [9] 董丹萍, 章婷曦, 张丁予, 王巧云, 李德芳, 王国祥. 太湖湖泛易发区沉积物中有机磷形态分布特征[J]. 环境科学, 2016, 37(11):4194-4202. DONG DP, ZHANG TX, ZHANG DY, WANG QY, LI DF, WANG GX. Characteristics of organic phosphorus fractions in the sediments of the black water aggregation in Lake Taihu[J]. Environmental Science, 2016, 37(11):4194-4202(in Chinese).
    [10] WANG ZH, GUI HR, LUO ZX, ZHEN Z, YAN CZ, XING BS. Dissolved organic phosphorus enhances arsenate bioaccumulation and biotransformation in Microcystis aeruginosa[J]. Environmental Pollution, 2019, 252:1755-1763.
    [11] BELL DW, PELLECHIA PJ, INGALL ED, BENITEZ-NELSON CR. Resolving marine dissolved organic phosphorus (DOP) composition in a coastal estuary[J]. Limnology and Oceanography, 2020, 65(11):2787-2799.
    [12] ZHANG Q, CHEN YC, WANG M, ZHANG JY, CHEN QW, LIU DS. Molecular responses to inorganic and organic phosphorus sources in the growth and toxin formation of Microcystis aeruginosa[J]. Water Research, 2021, 196:117048.
    [13] 何东, 晁建颖, 张毅敏, 杨飞, 王宇, 郭艳敏. 藻源性颗粒有机物对磷饥饿微囊藻磷富集与生长的影响[J]. 中国环境科学, 2016, 36(12):3777-3783. HE D, CHAO JY, ZHANG YM, YANG F, WANG Y, GUO YM. Effects of the phytoplankton-derived particulate organic matter on the growth and phosphorus enrichment of phosphorus-deficiency Microcystis aeruginosa[J]. China Environmental Science, 2016, 36(12):3777-3783(in Chinese).
    [14] 凌寒. 环境中的氮[J]. 世界科学, 2019(4):24-25. LING H. Nitrogen in the environment[J]. World Science, 2019(4):24-25(in Chinese).
    [15] 李松兴, 陈聪聪. 氮肥对环境的影响及防治[J]. 科技资讯, 2013, 11(16):130. LI SX, CHEN CC. Influence of nitrogen fertilizer on environment and its control[J]. Science & Technology Information, 2013, 11(16):130(in Chinese).
    [16] 徐青, 吴怡, 廖梦霞, 邓天龙. 水环境中氮磷形态分析方法研究进展[J]. 岩矿测试, 2008, 27(2):137-140, 145. XU Q, WU Y, LIAO MX, DENG TL. Advances on speciation analysis of nitrogen and phosphorus in aquatic environment[J]. Rock and Mineral Analysis, 2008, 27(2):137-140, 145(in Chinese).
    [17] JEPPESEN E, MEERHOFF M, JACOBSEN BA, HANSEN RS, SØNDERGAARD M, JENSEN JP, LAURIDSEN TL, MAZZEO N, BRANCO CWC. Restoration of shallow lakes by nutrient control and biomanipulation-the successful strategy varies with lake size and climate[J]. Hydrobiologia, 2007, 581(1):269-285.
    [18] FEUCHTMAYR H, MORAN R, HATTON K, CONNOR L, HEYES T, MOSS B, HARVEY I, ATKINSON D. Global warming and eutrophication:effects on water chemistry and autotrophic communities in experimental hypertrophic shallow lake mesocosms[J]. Journal of Applied Ecology, 2009, 46(3):713-723.
    [19] 高伟, 程国微, 严长安, 陈岩. 1988-2018年滇池氮磷比的时空演变特征与原因解析[J]. 湖泊科学, 2021, 33(1):64-73. GAO W, CHENG GW, YAN CA, CHEN Y. Identifying spatiotemporal alteration of nitrogen to phosphorus ratio of Lake Dianchi and its driving forces during 1988-2018[J]. Journal of Lake Sciences, 2021, 33(1):64-73(in Chinese).
    [20] 韩汶均, 许彦婷, 蒋阳杨, 姚亚楠, 曹学彬, 姜爱莉, 陈丽红, 邢荣莲. 氮磷比、盐度、pH对强壮硬毛藻生长和光合作用的影响[J]. 大连海洋大学学报, 2019, 34(6):776-784. HAN WJ, XU YT, JIANG YY, YAO YN, CAO XB, JIANG AL, CHEN LH, XING RL. Effects of N/P ratio, salinity and pH on growth and photosynthesis of sea weed Chaetomorpha valida[J]. Journal of Dalian Ocean University, 2019, 34(6):776-784(in Chinese).
    [21] 孟顺龙, 裘丽萍, 胡庚东, 瞿建宏, 范立民, 宋超, 陈家长, 徐跑. 氮磷比对两种蓝藻生长及竞争的影响[J]. 农业环境科学学报, 2012, 31(7):1438-1444. MENG SL, QIU LP, HU GD, QU JH, FAN LM, SONG C, CHEN JC, XU P. Effect of nitrogen and phosphorus ratios on growth and competition of two blue-green algae[J]. Journal of Agro-Environment Science, 2012, 31(7):1438-1444(in Chinese).
    [22] ZHANG XY, WANG ZH, LUO ZX, CHEN Y, HUANG XG. Insights into the conversion of dissolved organic phosphorus favors algal bloom, arsenate biotransformation and microcystins release of Microcystis aeruginosa[J]. Journal of Environmental Sciences, 2023, 125:205-214.
    [23] WANG NX, HUANG B, XU S, WEI ZB, MIAO AJ, JI R, YANG LY. Effects of nitrogen and phosphorus on arsenite accumulation, oxidation, and toxicity in Chlamydomonas reinhardtii[J]. Aquatic Toxicology, 2014, 157:167-174.
    [24] WURL O, ZIMMER L, CUTTER GA. Arsenic and phosphorus biogeochemistry in the ocean:arsenic species as proxies for P-limitation[J]. Limnology and Oceanography, 2013, 58(2):729-740.
    [25] CHE FF, DU MM, YAN CZ. Arsenate biotransformation by Microcystis aeruginosa under different nitrogen and phosphorus levels[J]. Journal of Environmental Sciences, 2018, 66:41-49.
    [26] 张佳丽. 不同环境条件下铜绿微囊藻对砷的生物转化[D]. 昆明:云南大学硕士学位论文, 2017. ZHANG JL. Biotransformation of arsenic by Microcystis aeruginosa under different environmental conditions[D]. Kunming:Master's Thesis of Yunnan University, 2017(in Chinese).
    [27] 孔欣, 张树林, 戴伟, 张达娟, 毕相东. 氮、磷营养盐对铜绿微囊藻生长的影响[J]. 水产科技情报, 2020, 47(5):296-300. KONG X, ZHANG SL, DAI W, ZHANG DJ, BI XD. Effects of nitrogen and phosphorus nutrients on the growth of Microcystis aeruginisa[J]. Fisheries Science & Technology Information, 2020, 47(5):296-300(in Chinese).
    [28] PENG SX, DENG DG, HE P, XU XX, ZHANG CC, CAO J, LIU Q, ZHANG TT. Effects of Microcystis aeruginosa on the life history traits and SOD activity of Daphnia similoides sinensis[J]. Environmental Science and Pollution Research, 2018, 25(30):30696-30707.
    [29] ZHU YG, SUN GX, LEI M, TENG M, LIU YX, CHEN NC, WANG LH, CAREY AM, DEACON C, RAAB A, MEHARG AA, WILLIAMS PN. High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice[J]. Environmental Science & Technology, 2008, 42(13):5008-5013.
    [30] GUO PR, GONG Y, WANG C, LIU X, LIU JT. Arsenic speciation and effect of arsenate inhibition in a Microcystis aeruginosa culture medium under different phosphate regimes[J]. Environmental Toxicology and Chemistry, 2011, 30(8):1754-1759.
    [31] MAMUN M, KWON S, KIM JE, AN KG. Evaluation of algal chlorophyll and nutrient relations and the N:P ratios along with trophic status and light regime in 60 Korea Reservoirs[J]. The Science of the Total Environment, 2020, 741:140451.
    [32] 陈敏怡, 王振红, 罗专溪. 不同磷源对砷胁迫下2种绿藻生长的影响[J]. 生态毒理学报, 2020, 15(5):218-227. CHEN MY, WANG ZH, LUO ZX. Stress effects of arsenate on two common freshwater green microalgae under different phosphorus regimes[J]. Asian Journal of Ecotoxicology, 2020, 15(5):218-227(in Chinese).
    [33] 李俊磊. 中国近海与西太平洋浮游植物光合活性特征研究[D]. 青岛:中国科学院研究生院(海洋研究所)博士学位论文, 2016. LI JL. Studies on photosynthetic characteristics of phytoplankton in China Sea and the west Pacific[D]. Qingdao:Doctoral Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2016(in Chinese).
    [34] CALDWELL ELDRIDGE SL, WOOD TM, ECHOLS KR, TOPPING BR. Microcystins, nutrient dynamics, and other environmental factors during blooms of non-microcystin-producing Aphanizomenon flos-aquae in Upper Klamath Lake, Oregon, 2009[J]. Lake and Reservoir Management, 2013, 29(1):68-81.
    [35] PENG GT, LIN SJ, FAN ZQ, WANG XR. Transcriptional and physiological responses to nutrient loading on toxin formation and photosynthesis in Microcystis aeruginosa FACHB-905[J]. Toxins, 2017, 9(5):168.
    [36] LUO ZX, WANG ZH, LIU AF, YAN Y, WU YQ, ZHANG XY. New insights into toxic effects of arsenate on four Microcystis species under different phosphorus regimes[J]. Environmental Science and Pollution Research, 2020, 27(35):44460-44469.
    [37] 于清. 低磷条件下高氮对两种沉水植物生长的影响[D]. 北京:中国科学院大学硕士学位论文, 2015. YU Q. Effects of high nitrogen on the growth of two submerged plants under low phosphorus condition[D]. Beijing:Master's Thesis of University of Chinese Academy of Sciences, 2015(in Chinese).
    [38] WANG ZH, LUO ZX, YAN CZ, CHE FF, YAN YM. Arsenic uptake and depuration kinetics in Microcystis aeruginosa under different phosphate regimes[J]. Journal of Hazardous Materials, 2014, 276:393-399.
    [39] 王振红, 罗专溪, 车霏霏, 严雅萌, 颜昌宙. 不同磷水平下铜绿微囊藻对砷酸盐的吸收和净化[J]. 中国环境科学, 2015, 35(2):533-538. WANG ZH, LUO ZX, CHE FF, YAN YM, YAN CZ. Uptake and depuration kinetics of arsenatein Microcystis aeruginosaunder different phosphate regimes[J]. China Environmental Science, 2015, 35(2):533-538(in Chinese).
    [40] 付保荣, 鲁男, 苗斌, 王淑妍, 左世文, 何哲, 张润洁. 环境因子对铜绿微囊藻生长和产毒的影响[J]. 辽宁大学学报:自然科学版, 2015, 42(1):85-90. FU BR, LU N, MIAO B, WANG SY, ZUO SW, HE Z, ZHANG RJ. Effects of environmental factors on growth and toxin production of Microcystis aeraginosa[J]. Journal of Liaoning University:Natural Sciences Edition, 2015, 42(1):85-90(in Chinese).
    [41] ZHOU YP, LI X, XIA QQ, DAI RH. Transcriptomic survey on the microcystins production and growth of Microcystis aeruginosa under nitrogen starvation[J]. Science of the Total Environment, 2020, 700:134501.
    [42] 史红星, 曲久辉, 刘会娟, 牟瑛琳, 肖凯涛, 王凌. 微囊藻毒素产生过程中氮素作用的同位素示踪研究[J]. 科学通报, 2008, 53(4):407-412. SHI HX, QU JH, LIU HJ, (MOU/MU) YL, XIAO KT, WANG L. Isotope tracing study on the role of nitrogen in the production of microcystins[J]. Chinese Science Bulletin, 2008, 53(4):407-412(in Chinese).
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵曜,柳彩霞,杨轶丹,罗专溪,王振红. 氮磷比对有机磷环境中微藻砷代谢的生态风险效应[J]. 微生物学报, 2023, 63(3): 1230-1242

复制
分享
文章指标
  • 点击次数:256
  • 下载次数: 827
  • HTML阅读次数: 834
  • 引用次数: 0
历史
  • 收稿日期:2022-07-24
  • 录用日期:2022-10-18
  • 在线发布日期: 2023-03-08
  • 出版日期: 2023-03-04
文章二维码