黏质阿克曼菌及其代谢物短链脂肪酸与溃疡性结肠炎肠黏膜屏障的相关性研究
作者:
基金项目:

国家自然科学基金(81860810);第四批全国中医(临床、基础)优秀人才研修项目(201724);甘肃中医药大学研究生创新基金(CX2020-34);甘肃省中医药研究中心开放课题资助,甘肃中医药大学“岐黄英才”导师专项基金博导项目(2022-05)


Relationship of Akkermansia muciniphila and the metabolites short chain fatty acids with intestinal mucosal barrier in ulcerative colitis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [155]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    溃疡性结肠炎(ulcerative colitis, UC)已成为当今世界范围内的发病率高、患病人数多、病程缠绵的终身难治性疾病。而黏质阿克曼菌(Akkermansia muciniphila, A. muciniphila)及其代谢物短链脂肪酸(short chain fatty acid, SCFA)是近年来发现的对UC肠黏膜屏障具有保护作用的益生菌及代谢物,但其具体作用机制有待归纳和总结。因此本文从肠黏膜机械、化学、免疫及生物屏障这四个角度综合分析近年来的相关研究,试图探讨A. muciniphila和SCFA对肠黏膜屏障的具体作用机理,为研究UC的发病机制、治疗手段提供新视角和新思路。

    Abstract:

    Ulcerative colitis (UC) is a life-long refractory disease with high incidence worldwide. Akkermansia muciniphila (A. muciniphila) and the metabolites short chain fatty acids (SCFA) have been found to protect intestinal mucosal barrier in UC, but the specific mechanisms fail to be summarized. Therefore, we analyze the research on the mechanical, chemical, immune, and biological barriers of intestinal mucosa and discuss the mechanisms of A. muciniphila and SCFA on intestinal mucosal barrier, hoping to provide a new perspective and mindset for the study of the pathogenesis and therapy of UC.

    参考文献
    [1] LI X, SONG PG, LI J, TAO YC, LI GW, LI XM, YU ZL. The disease burden and clinical characteristics of inflammatory bowel disease in the Chinese population:a systematic review and meta-analysis[J]. International Journal of Environmental Research and Public Health, 2017, 14(3):238.
    [2] KAPLAN GG, NG SC. Understanding and preventing the global increase of inflammatory bowel disease[J]. Gastroenterology, 2017, 152(2):313-321.e2.
    [3] LOFTUS EV JR. Clinical epidemiology of inflammatory bowel disease:incidence, prevalence, and environmental influences[J]. Gastroenterology, 2004, 126(6):1504-1517.
    [4] PENNER R, FEDORAK RN, MADSEN KL. Probiotics and nutraceuticals:non-medicinal treatments of gastrointestinal diseases[J]. Current Opinion in Pharmacology, 2005, 5(6):596-603.
    [5] CHANG CJ, LIN TL, TSAI YL, WU TR, LAI WF, LU CC, LAI HC. Next generation probiotics in disease amelioration[J]. Journal of Food and Drug Analysis, 2019, 27(3):615-622.
    [6] O'TOOLE PW, MARCHESI JR, HILL C. Next-generation probiotics:the spectrum from probiotics to live biotherapeutics[J]. Nature Microbiology, 2017, 2:17057.
    [7] KUMARI M, SINGH P, NATARAJ BH, KOKKILIGADDA A, NAITHANI H, AZMAL ALI S, BEHARE PV, NAGPAL R. Fostering next-generation probiotics in human gut by targeted dietary modulation:an emerging perspective[J]. Food Research International, 2021, 150:110716.
    [8] CANI PD, GEURTS L, MATAMOROS S, PLOVIER H, DUPARC T. Glucose metabolism:focus on gut microbiota, the endocannabinoid system and beyond[J]. Diabetes & Metabolism, 2014, 40(4):246-257.
    [9] HIIPPALA K, JOUHTEN H, RONKAINEN A, HARTIKAINEN A, KAINULAINEN V, JALANKA J, SATOKARI R. The potential of gut commensals in reinforcing intestinal barrier function and alleviating inflammation[J]. Nutrients, 2018, 10(8):988.
    [10] DERRIEN M, VAUGHAN EE, PLUGGE CM, de VOS WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium[J]. International Journal of Systematic and Evolutionary Microbiology, 2004, 54(5):1469-1476.
    [11] ZOETENDAL EG, PLUGGE CM, AKKERMANS ADL, de VOS WM. Victivallis vadensis gen. nov., sp. nov., a sugar-fermenting anaerobe from human faeces[J]. International Journal of Systematic and Evolutionary Microbiology, 2003, 53(Pt 1):211-215.
    [12] LIU Q, LU WW, TIAN FW, ZHAO JX, ZHANG H, HONG K, YU LL. Akkermansia muciniphila exerts strain-specific effects on DSS-induced ulcerative colitis in mice[J]. Frontiers in Cellular and Infection Microbiology, 2021, 11:698914.
    [13] BAE M, CASSILLY CD, LIU XX, PARK SM, TUSI BK, CHEN XJ, KWON J, FILIPČÍK P, BOLZE AS, LIU ZH, VLAMAKIS H, GRAHAM DB, BUHRLAGE SJ, XAVIER RJ, CLARDY J. Akkermansia muciniphila phospholipid induces homeostatic immune responses[J]. Nature, 2022, 608(7921):168-173.
    [14] YAN J, SHENG LL, LI HK. Akkermansia muciniphila:is it the Holy Grail for ameliorating metabolic diseases?[J]. Gut Microbes, 2021, 13(1):1984104.
    [15] OTTMAN N, REUNANEN J, MEIJERINK M, PIETILÄ TE, KAINULAINEN V, KLIEVINK J, HUUSKONEN L, AALVINK S, SKURNIK M, BOEREN S, SATOKARI R, MERCENIER A, PALVA A, SMIDT H, de Vos WM, BELZER C. Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function[J]. PLoS One, 2017, 12(3):e0173004.
    [16] CORRÊA-OLIVEIRA R, FACHI JL, VIEIRA A, SATO FT, VINOLO MAR. Regulation of immune cell function by short-chain fatty acids[J]. Clinical & Translational Immunology, 2016, 5(4):e73.
    [17] ZHANG T, LI QQ, CHENG L, BUCH H, ZHANG FM. Akkermansia muciniphila is a promising probiotic[J]. Microbial Biotechnology, 2019, 12(6):1109-1125.
    [18] REUNANEN J, KAINULAINEN V, HUUSKONEN L, OTTMAN N, BELZER C, HUHTINEN H, de Vos WM, SATOKARI R. Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer[J]. Applied and Environmental Microbiology, 2015, 81(11):3655-3662.
    [19] ARRIETA MC, BISTRITZ L, MEDDINGS JB. Alterations in intestinal permeability[J]. Gut, 2006, 55(10):1512-1520.
    [20] XAVIER RJ, PODOLSKY DK. Unravelling the pathogenesis of inflammatory bowel disease[J]. Nature, 2007, 448(7152):427-434.
    [21] TSUKITA S, FURUSE M, ITOH M. Multifunctional strands in tight junctions[J]. Nature Reviews Molecular Cell Biology, 2001, 2(4):285-293.
    [22] OTTE JM, KIEHNE K, HERZIG KH. Antimicrobial peptides in innate immunity of the human intestine[J]. Journal of Gastroenterology, 2003, 38(8):717-726.
    [23] SPERANDIO B, FISCHER N, SANSONETTI PJ. Mucosal physical and chemical innate barriers:lessons from microbial evasion strategies[J]. Seminars in Immunology, 2015, 27(2):111-118.
    [24] MÖRBE UM, JØRGENSEN PB, FENTON TM, von BURG N, RIIS LB, SPENCER J, AGACE WW. Human gut-associated lymphoid tissues (GALT); diversity, structure, and function[J]. Mucosal Immunology, 2021, 14(4):793-802.
    [25] WANG YX, HONG CM, WU ZB, LI SW, XIA YY, LIANG YY, HE XH, XIAO XY, TANG WJ. Resveratrol in intestinal health and disease:focusing on intestinal barrier[J]. Frontiers in Nutrition, 2022, 9:848400.
    [26] GARDINER KR, ANDERSON NH, ROWLANDS BJ, BARBUL A. Colitis and colonic mucosal barrier dysfunction[J]. Gut, 1995, 37(4):530-535.
    [27] TURNER JR. Intestinal mucosal barrier function in health and disease[J]. Nature Reviews Immunology, 2009, 9(11):799-809.
    [28] MUNIZ LR, KNOSP C, YERETSSIAN G. Intestinal antimicrobial peptides during homeostasis, infection, and disease[J]. Frontiers in Immunology, 2012, 3:310.
    [29] BAUMGART DC, DIGNASS AU. Intestinal barrier function[J]. Current Opinion in Clinical Nutrition and Metabolic Care, 2002, 5(6):685-694.
    [30] ZOUITEN-MEKKI L, SERGHINI M, FEKIH M, KALLEL L, MATRI S, BEN MUSTAPHA N, BOUBAKER J, FILALI A. Epithelial cell in intestinal homeostasis and inflammatory bowel diseases[J]. Medecine Sciences:M/S, 2013, 29(12):1145-1150.
    [31] MADARA JL. LOOSENING TIGHT JUNCTIONS. Lessons from the intestine[J]. The Journal of Clinical Investigation, 1989, 83(4):1089-1094.
    [32] TORNAVACA O, CHIA MH, DUFTON N, ALMAGRO LO, CONWAY DE, RANDI AM, SCHWARTZ MA, MATTER K, BALDA MS. ZO-1 controls endothelial adherens junctions, cell-cell tension, angiogenesis, and barrier formation[J]. The Journal of Cell Biology, 2015, 208(6):821-838.
    [33] DENKER BM, NIGAM SK. Molecular structure and assembly of the tight junction[J]. The American Journal of Physiology, 1998, 274(1):F1-F9.
    [34] JOHANSSON MEV, HANSSON GC. Immunological aspects of intestinal mucus and mucins[J]. Nature Reviews Immunology, 2016, 16(10):639-649.
    [35] BARBARA G, BARBARO MR, FUSCHI D, PALOMBO M, FALANGONE F, CREMON C, MARASCO G, STANGHELLINI V. Inflammatory and microbiota-related regulation of the intestinal epithelial barrier[J]. Frontiers in Nutrition, 2021, 8:718356.
    [36] BEVINS CL, SALZMAN NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis[J]. Nature Reviews Microbiology, 2011, 9(5):356-368.
    [37] LOPEZ-SILES M, ENRICH-CAPÓ N, ALDEGUER X, SABAT-MIR M, DUNCAN SH, GARCIA-GIL LJ, MARTINEZ-MEDINA M. Alterations in the abundance and co-occurrence of Akkermansia muciniphila and Faecalibacterium prausnitzii in the colonic mucosa of inflammatory bowel disease subjects[J]. Frontiers in Cellular and Infection Microbiology, 2018, 8:281.
    [38] GERSEMANN M, STANGE EF, WEHKAMP J. From intestinal stem cells to inflammatory bowel diseases[J]. World Journal of Gastroenterology, 2011, 17(27):3198-3203.
    [39] ZHAI QX, FENG SS, ARJAN N, CHEN W. A next generation probiotic, Akkermansia muciniphila[J]. Critical Reviews in Food Science and Nutrition, 2019, 59(19):3227-3236.
    [40] WANG LJ, TANG L, FENG YM, ZHAO SY, HAN M, ZHANG C, YUAN GH, ZHU J, CAO SY, WU Q, LI L, ZHANG Z. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8+ T cells in mice[J]. Gut, 2020, 69(11):1988-1997.
    [41] KANG CS, BAN M, CHOI EJ, MOON HG, JEON JS, KIM DK, PARK SK, JEON SG, ROH TY, MYUNG SJ, GHO YS, KIM JG, KIM YK. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis[J]. PLoS One, 2013, 8(10):e76520.
    [42] CHELAKKOT C, CHOI Y, KIM DK, PARK HT, GHIM J, KWON Y, JEON J, KIM MS, JEE YK, GHO YS, PARK HS, KIM YK, RYU SH. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions[J]. Experimental & Molecular Medicine, 2018, 50(2):e450.
    [43] LUO YH, LAN C, XIE KH, LI H, DEVILLARD E, HE J, LIU L, CAI JY, TIAN G, WU AM, REN ZH, CHEN DW, YU B, HUANG ZQ, ZHENG P, MAO XB, YU J, LUO JQ, YAN H, WANG QY, WANG HF, TANG JY. Active or autoclaved Akkermansia muciniphila relieves TNF-α-induced inflammation in intestinal epithelial cells through distinct pathways[J]. Frontiers in Immunology, 2021, 12:788638.
    [44] JOHANSSON MEV, PHILLIPSON M, PETERSSON J, VELCICH A, HOLM L, HANSSON GC. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(39):15064-15069.
    [45] OKUMURA R, TAKEDA K. Roles of intestinal epithelial cells in the maintenance of gut homeostasis[J]. Experimental & Molecular Medicine, 2017, 49(5):e338.
    [46] QIN TF, YANG J, HUANG DY, ZHANG ZJ, HUANG YL, CHEN H, XU GY. DOCK4 stimulates MUC2 production through its effect on goblet cell differentiation[J]. Journal of Cellular Physiology, 2021, 236(9):6507-6519.
    [47] LI H, LIMENITAKIS JP, FUHRER T, GEUKING MB, LAWSON MA, WYSS M, BRUGIROUX S, KELLER I, MACPHERSON JA, RUPP S, STOLP B, STEIN JV, STECHER B, SAUER U, MCCOY KD, MACPHERSON AJ. The outer mucus layer hosts a distinct intestinal microbial niche[J]. Nature Communications, 2015, 6:8292.
    [48] JOHANSSON MEV, GUSTAFSSON JK, HOLMÉN-LARSSON J, JABBAR KS, XIA LJ, XU H, GHISHAN FK, CARVALHO FA, GEWIRTZ AT, SJÖVALL H, HANSSON GC. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis[J]. Gut, 2014, 63(2):281-291.
    [49] JOHANSSON MEV, GUSTAFSSON JK, SJÖBERG KE, PETERSSON J, HOLM L, SJÖVALL H, HANSSON GC. Bacteria penetrate the inner mucus layer before inflammation in the dextran sulfate colitis model[J]. PLoS One, 2010, 5(8):e12238.
    [50] DESAI MS, SEEKATZ AM, KOROPATKIN NM, KAMADA N, HICKEY CA, WOLTER M, PUDLO NA, KITAMOTO S, TERRAPON N, MULLER A, YOUNG VB, HENRISSAT B, WILMES P, STAPPENBECK TS, NÚÑEZ G, MARTENS EC. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility[J]. Cell, 2016, 167(5):1339-1353.e21.
    [51] ZHAO F, ZHOU GH, LIU XY, SONG SX, XU XL, HOOIVELD G, MÜLLER M, LIU L, KRISTIANSEN K, LI CB. Dietary protein sources differentially affect the growth of Akkermansia muciniphila and maintenance of the gut mucus barrier in mice[J]. Molecular Nutrition & Food Research, 2019, 63(23):e1900589.
    [52] YU LL, ZHAO D, NIAN YQ, LI CB. Casein-fed mice showed faster recovery from DSS-induced colitis than chicken-protein-fed mice[J]. Food & Function, 2021, 12(13):5806-5820.
    [53] WANG L, WU YZ, ZHUANG LJ, CHEN XF, MIN HY, SONG SY, LIANG Q, LI AD, GAO Q. Puerarin prevents high-fat diet-induced obesity by enriching Akkermansia muciniphila in the gut microbiota of mice[J]. PLoS One, 2019, 14(6):e0218490.
    [54] GANZ T. Defensins:antimicrobial peptides of innate immunity[J]. Nature Reviews Immunology, 2003, 3(9):710-720.
    [55] WEHKAMP J, SCHMID M, STANGE EF. Defensins and other antimicrobial peptides in inflammatory bowel disease[J]. Current Opinion in Gastroenterology, 2007, 23(4):370-378.
    [56] ROBINSON K, DENG Z, HOU YQ, ZHANG GL. Regulation of the intestinal barrier function by host defense peptides[J]. Frontiers in Veterinary Science, 2015, 2:57.
    [57] DERRIEN M, BELZER C, de VOS WM. Akkermansia muciniphila and its role in regulating host functions[J]. Microbial Pathogenesis, 2017, 106:171-181.
    [58] CANI PD, van HUL M. Novel opportunities for next-generation probiotics targeting metabolic syndrome[J]. Current Opinion in Biotechnology, 2015, 32:21-27.
    [59] YU JY, LIU TL, GAO ZH, LIU RB, WANG ZX, CHEN YX, CAO J, DONG YL. Akkermansia muciniphila colonization alleviating high fructose and restraint stress-induced jejunal mucosal barrier disruption[J]. Nutrients, 2022, 14(15):3164.
    [60] EHMANN D, WENDLER J, KOENINGER L, LARSEN IS, KLAG T, BERGER J, MARETTE A, SCHALLER M, STANGE EF, MALEK NP, JENSEN BAH, WEHKAMP J. Paneth cell α-defensins HD-5 and HD-6 display differential degradation into active antimicrobial fragments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(9):3746-3751.
    [61] SSOVRAN B, HUGENHOLTZ F, ELDERMAN M, VAN BEEK AA, GRAVERSEN K, HUIJSKES M, BOEKSCHOTEN MV, SAVELKOUL HFJ, de VOS P, DEKKER J, WELLS JM. Age-associated impairment of the mucus barrier function is associated with profound changes in microbiota and immunity[J]. Scientific Reports, 2019, 9:1437.
    [62] ZHONG W, WEI XY, HAO LY, LIN TD, YUE RC, SUN XG, GUO W, DONG HB, LI TJ, AHMADI AR, SUN ZL, ZHANG QB, ZHAO JC, ZHOU ZX. Paneth cell dysfunction mediates alcohol-related steatohepatitis through promoting bacterial translocation in mice:role of zinc deficiency[J]. Hepatology:Baltimore, Md, 2020, 71(5):1575-1591.
    [63] RAGLAND SA, CRISS AK. From bacterial killing to immune modulation:recent insights into the functions of lysozyme[J]. PLoS Pathogens, 2017, 13(9):e1006512.
    [64] YYU SY, BALASUBRAMANIAN I, LAUBITZ D, TONG K, BANDYOPADHYAY S, LIN X, FLORES J, SINGH R, LIU Y, MACAZANA C, ZHAO YL, BÉGUET-CRESPEL F, PATIL K, MIDURA-KIELA MT, WANG D, YAP GS, FERRARIS RP, WEI Z, BONDER EM, HÄGGBLOM MM, et al. Paneth cell-derived lysozyme defines the composition of mucolytic microbiota and the inflammatory tone of the intestine[J]. Immunity, 2020, 53(2):398-416.e8.
    [65] 李玉, 陈晓理, 张正, 黄兴兰, 闫兆平. 大黄对小鼠肠粘膜屏障保护作用的机理探讨[J]. 四川大学学报:医学版, 2005, 36(2):210-212. LI Y, CHEN XL, ZHANG Z, HUANG XL, YAN ZP. Study on the mechanism by which rhubarb protects the mucosal barrier of intestine of mouse[J]. Journal of Sichuan University:Medical Sciences Edition, 2005, 36(2):210-212(in Chinese).
    [66] RÉGNIER M, RASTELLI M, MORISSETTE A, SURIANO F, Le ROY T, PILON G, DELZENNE N M, MARETTE A, van HUL M, CANI P D. Rhubarb supplementation prevents diet-induced obesity and diabetes in association with increased Akkermansia muciniphila in mice[J]. Nutrients. 2020, 12(10):2932.
    [67] KUHN KA, PEDRAZA I, DEMORUELLE MK. Mucosal immune responses to microbiota in the development of autoimmune disease[J]. Rheumatic Diseases Clinics of North America, 2014, 40(4):711-725.
    [68] KUNKEL EJ, CAMPBELL DJ, BUTCHER EC. Chemokines in lymphocyte trafficking and intestinal immunity[J]. Microcirculation, 2003, 10(3/4):313-323.
    [69] DONG-YAN L, WEIGUO J, PEI L. Reduction of the amount of intestinal secretory IgA in fulminant hepatic failure[J]. Brazilian Journal of Medical and Biological Research, 2011, 44(5):477-482.
    [70] de PALMA G, NADAL I, MEDINA M, DONAT E, RIBES-KONINCKX C, CALABUIG M, SANZ Y. Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children[J]. BMC Microbiology, 2010, 10:63.
    [71] ZHU HL, LIU YL, XIE XL, HUANG JJ, HOU YQ. Effect of L-arginine on intestinal mucosal immune barrier function in weaned pigs after Escherichia coli LPS challenge[J]. Innate Immunity, 2013, 19(3):242-252.
    [72] KUCZMA MP, SZUREK EA, CEBULA A, CHASSAING B, JUNG YJ, KANG SM, FOX JG, STECHER B, IGNATOWICZ L. Commensal epitopes drive differentiation of colonic Tregs[J]. Science Advances, 2020, 6(16):eaaz3186.
    [73] ZHANG T, JI XH, LU GC, ZHANG FM. The potential of Akkermansia muciniphila in inflammatory bowel disease[J]. Applied Microbiology and Biotechnology, 2021, 105(14/15):5785-5794.
    [74] MA Y, HU C, YAN WX, JIANG HM, LIU G. Lactobacillus pentosus increases the abundance of Akkermansia and affects the serum metabolome to alleviate DSS-induced colitis in a murine model[J]. Frontiers in Cell and Developmental Biology, 2020, 8:591408.
    [75] BANKS C, BATEMAN A, PAYNE R, JOHNSON P, SHERON N. CHEMOKINE EXPRESSION IN IBD. Mucosal chemokine expression is unselectively increased in both ulcerative colitis and Crohn's disease[J]. The Journal of Pathology, 2003, 199(1):28-35.
    [76] QU SW, FAN LN, QI YD, XU CC, HU YY, CHEN SJ, LIU W, LIU WL, SI JM. Akkermansia muciniphila alleviates dextran sulfate sodium (DSS)-induced acute colitis by NLRP3 activation[J]. Microbiology Spectrum, 2021, 9(2):e0073021.
    [77] HANSEN CHF, HOLM TL, KRYCH Ł, ANDRESEN L, NIELSEN DS, RUNE I, HANSEN AK, SKOV S. Gut microbiota regulates NKG2D ligand expression on intestinal epithelial cells[J]. European Journal of Immunology, 2013, 43(2):447-457.
    [78] SHI MX, YUE YS, MA C, DONG L, CHEN F. Pasteurized Akkermansia muciniphila ameliorate the LPS-induced intestinal barrier dysfunction via modulating AMPK and NF-κB through TLR2 in caco-2 cells[J]. Nutrients, 2022, 14(4):764.
    [79] DERRIEN M, van BAARLEN P, HOOIVELD G, NORIN E, MÜLLER M, de VOS WM. Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila[J]. Frontiers in Microbiology, 2011, 2:166.
    [80] WANG JC, XIANG R, WANG RJ, ZHANG BC, GONG WM, ZHANG JC, ZHANG M, WANG MZ. The variable oligomeric state of Amuc_1100 from Akkermansia muciniphila[J]. Journal of Structural Biology, 2020, 212(1):107593.
    [81] FOTI M, RICCIARDI-CASTAGNOLI P. Antigen sampling by mucosal dendritic cells[J]. Trends in Molecular Medicine, 2005, 11(9):394-396.
    [82] TANG YH, LIU HC, SONG G, WU TT, ZHAO Y, SHI LJ. A case-control study on the association of intestinal flora with ulcerative colitis[J]. AMB Express, 2021, 11(1):106.
    [83] DAI ZF, MA XY, YANG RL, WANG HC, XU DD, YANG JN, GUO XB, MENG SS, XU R, LI YX, XU Y, LI K, LIN XH. Intestinal flora alterations in patients with ulcerative colitis and their association with inflammation[J]. Experimental and Therapeutic Medicine, 2021, 22(5):1322.
    [84] 赵凡, 李春保. 肠道菌Akkermansia muciniphila的特性及其与机体健康的关系[J]. 微生物学通报, 2017, 44(6):1458-1463. ZHAO F, LI CB. Characteristics of intestinal bacterium Akkermansia muciniphila and the association with host health[J]. Microbiology China, 2017, 44(6):1458-1463(in Chinese).
    [85] 王磊, 姚泓, 汤新, 吴希阳. Akkermansia muciniphila在肠道消化模拟系统中的变化[J]. 食品科学, 2020, 41(6):201-206. WANG L, YAO H, TANG X, WU XY. Changes in abundance of inoculated Akkermansia muciniphila in an in vitro model gut system[J]. Food Science, 2020, 41(6):201-206(in Chinese).
    [86] 游丰锋, 杨光勇, 涂小华, 何亚敏, 喻良锦, 李雨彤, 李灿, 田维毅, 何光志. 保和丸对溃疡性结肠炎模型小鼠肠道益生菌A.muciniphila菌变化及肠黏膜屏障的影响[J]. 浙江中西医结合杂志, 2021, 31(4):303-307. YOU FF, YANG GY, TU XH, HE YM, YU LJ, LI YT, LI C, TIAN WY, HE GZ. Effect of Baohe Pill on the change in intestinal probiotic A.muciniphila and intestinal mucosal barrier in a mouse model of ulcerative colitis[J]. Zhejiang Journal of Integrated Traditional Chinese and Western Medicine, 2021, 31(4):303-307(in Chinese).
    [87] EARLEY H, LENNON G, BALFE Á, COFFEY JC, WINTER DC, O'CONNELL PR. The abundance of Akkermansia muciniphila and its relationship with sulphated colonic mucins in health and ulcerative colitis[J]. Scientific Reports, 2019, 9:15683.
    [88] 谢果珍, 唐圆, 宁晓妹, 邱集慧, 谭周进. 铁皮石斛多糖对高脂饮食小鼠肠黏膜结构及菌群的影响[J]. 生物技术通报, 2022, 38(2):150-157. XIE GZ, TANG Y, NING XM, QIU JH, TAN ZJ. Effects of Dendrobium officinale polysaccharides on the intestinal mucosal structure and microbiota in mice fed a high-fat diet[J]. Biotechnology Bulletin, 2022, 38(2):150-157(in Chinese).
    [89] BU F, DING Y, CHEN T, WANG Q, WANG R, ZHOU JY, JIANG F, ZHANG D, XU MM, SHI GP, CHEN YG. Total flavone of Abelmoschus Manihot improves colitis by promoting the growth of Akkermansia in mice[J]. Scientific Reports, 2021, 11:20787.
    [90] YANG LY, LIU C, ZHAO WJ, HE C, DING JM, DAI RH, XU K, XIAO L, LUO LX, LIU SY, LI W, MENG H. Impaired autophagy in intestinal epithelial cells alters gut microbiota and host immune responses[J]. Applied and Environmental Microbiology, 2018, 84(18):e00880-e00818.
    [91] KIM MH, KANG SG, PARK JH, YANAGISAWA M, KIM CH. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice[J]. Gastroenterology, 2013, 145(2):396-406.e10.
    [92] FELICE C, LEWIS A, ARMUZZI A, LINDSAY JO, SILVER A. Review article:selective histone deacetylase isoforms as potential therapeutic targets in inflammatory bowel diseases[J]. Alimentary Pharmacology & Therapeutics, 2015, 41(1):26-38.
    [93] le BARZ M, ANHÊ FF, VARIN TV, DESJARDINS Y, LEVY E, ROY D, URDACI MC, MARETTE A. Probiotics as complementary treatment for metabolic disorders[J]. Diabetes & Metabolism Journal, 2015, 39(4):291-303.
    [94] LI XY, WU YY, XU ZY, CHEN J, LI YQ, XING HJ, ZHANG XM, YUAN JL. Effects of hetiao jianpi decoction on intestinal injury and repair in rats with antibiotic-associated diarrhea[J]. Medical Science Monitor:International Medical Journal of Experimental and Clinical Research, 2020, 26:e921745.
    [95] BERGMAN EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species[J]. Physiological Reviews, 1990, 70(2):567-590.
    [96] ZHAO HB, JIA L, YAN QQ, DENG Q, WEI B. Effect of Clostridium butyricum and butyrate on intestinal barrier functions:study of a rat model of severe acute pancreatitis with intra-abdominal hypertension[J]. Frontiers in Physiology, 2020, 11:561061.
    [97] BEISNER J, FILIPE ROSA L, KADEN-VOLYNETS V, STOLZER I, GÜNTHER C, BISCHOFF SC. Prebiotic inulin and sodium butyrate attenuate obesity-induced intestinal barrier dysfunction by induction of antimicrobial peptides[J]. Frontiers in Immunology, 2021, 12:678360.
    [98] TAKAKUWA A, NAKAMURA K, KIKUCHI M, SUGIMOTO R, OHIRA S, YOKOI Y, AYABE T. Butyric acid and leucine induce α-defensin secretion from small intestinal paneth cells[J]. Nutrients, 2019, 11(11):2817.
    [99] 聂烁, 闻正顺. 肠道黏蛋白2的分泌、结构、合成调控及其在肠道疾病发生发展中的作用[J]. 动物营养学报, 2020, 32(6):2521-2532.
    NIE S, WEN ZS. Secretion, structure, synthesis regulation of intestinal mucin 2 and its role in development of intestinal diseases[J]. Chinese Journal of Animal Nutrition, 2020, 32(6):2521-2532 (in Chinese).
    [100] BURGER-VAN PAASSEN N, VINCENT A, PUIMAN PJ, van der SLUIS M, BOUMA J, BOEHM G, van GOUDOEVER JB, van SEUNINGEN I, RENES IB. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids:implications for epithelial protection[J]. The Biochemical Journal, 2009, 420(2):211-219.
    [101] DONOHOE DR, GARGE N, ZHANG XX, SUN W, O'CONNELL TM, BUNGER MK, BULTMAN SJ. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon[J]. Cell Metabolism, 2011, 13(5):517-526.
    [102] YU W, SU X, CHEN W, TIAN X, ZHANG K, GUO G, ZHOU LX, ZENG T, HAN B. Three types of gut bacteria collaborating to improve Kui Jie'an enema treat DSS-induced colitis in mice[J]. Biomedicine & Pharmacotherapy, 2019, 113:108751.
    [103] LÜHRS H, KUDLICH T, NEUMANN M, SCHAUBER J, MELCHER R, GOSTNER A, SCHEPPACH W, MENZEL TP. Butyrate-enhanced TNFalpha-induced apoptosis is associated with inhibition of NF-kappaB[J]. Anticancer Research, 2002, 22(3):1561-1568.
    [104] ZHOU LX, ZHANG MM, WANG YM, DORFMAN RG, LIU H, YU T, CHEN XT, TANG DH, XU L, YIN YY, PAN YD, ZHOU Q, ZHOU YH, YU CG. Faecalibacterium prausnitzii produces butyrate to maintain Th17/treg balance and to ameliorate colorectal colitis by inhibiting histone deacetylase 1[J]. Inflammatory Bowel Diseases, 2018, 24(9):1926-1940.
    [105] ZHANG W, CHENG C, HAN Q, CHEN YG, GUO JM, WU QN, ZHU B, SHAN JJ, SHI LY. Flos Abelmoschus manihot extract attenuates DSS-induced colitis by regulating gut microbiota and Th17/Treg balance[J]. Biomedicine & Pharmacotherapy, 2019, 117:109162.
    [106] WEI DN, MA P, FAN QQ, YU HC, PENG Y, LI XB. Yanning Syrup ameliorates the lipopolysaccharide- induced inflammation:adjusting the gut microbiota, short-chain fatty acids, and the CD4+ T cell balance[J]. Journal of Ethnopharmacology, 2022, 283:114729.
    [107] ASARAT M, APOSTOLOPOULOS V, VASILJEVIC T, DONKOR O. Short-chain fatty acids regulate cytokines and Th17/treg cells in human peripheral blood mononuclear cells in vitro[J]. Immunological Investigations, 2016, 45(3):205-222.
    [108] SIVAPRAKASAM S, BHUTIA YD, RAMACHANDRAN S, GANAPATHY V. Cell-surface and nuclear receptors in the colon as targets for bacterial metabolites and its relevance to colon health[J]. Nutrients, 2017, 9(8):856.
    [109] YI ZY, CHEN L, WANG Y, HE D, ZHAO D, ZHANG SH, YU R, HUANG JH. The potential mechanism of Liu-Wei-Di-Huang Pills in treatment of type 2 diabetic mellitus:from gut microbiota to short-chain fatty acids metabolism[J]. Acta Diabetologica, 2022, 59(10):1295-1308.
    [110] PACE F, RUDOLPH SE, CHEN Y, BAO B, KAPLAN DL, WATNICK PI. The short-chain fatty acids propionate and butyrate augment adherent-invasive Escherichia coli virulence but repress inflammation in a human intestinal enteroid model of infection[J]. Microbiology Spectrum, 2021, 9(2):e0136921.
    [111] DIAO H, JIAO AR, YU B, MAO XB, CHEN DW. Gastric infusion of short-chain fatty acids can improve intestinal barrier function in weaned piglets[J]. Genes & Nutrition, 2019, 14:4.
    [112] VINCENT AD, WANG XY, PARSONS SP, KHAN WI, HUIZINGA JD. Abnormal absorptive colonic motor activity in germ-free mice is rectified by butyrate, an effect possibly mediated by mucosal serotonin[J]. American Journal of Physiology Gastrointestinal and Liver Physiology, 2018, 315(5):G896-G907.
    [113] REIGSTAD CS, SALMONSON CE, RAINEY JF 3rd, SZURSZEWSKI JH, LINDEN DR, SONNENBURG JL, FARRUGIA G, KASHYAP PC. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells[J]. FASEB Journal:Official Publication of the Federation of American Societies for Experimental Biology, 2015, 29(4):1395-1403.
    [114]
    李洁.
    温肾健脾法对溃疡性结肠炎模型大鼠结肠组织Notch信号通路介导Treg/Th17细胞失衡的影响[D]. 兰州:甘肃中医药大学硕士学位论文, 2022.
    LI J. Effects of kidney warming and spleen strengthening on treg/Th17 cell imbalance mediated by Notch signaling pathway in colon of ulcerative colitis model rats[D]. Lanzhou:Master's Thesis of Gansu University of Chinese Medicine, 2022 (in Chinese).
    [115]
    张钊华. 四神丸对脾肾阳虚型溃疡性结肠炎模型大鼠TLR2/IRAK4/NF-κB信号通路的影响[D].
    兰州:甘肃中医药大学硕士学位论文, 2022.
    ZHANG ZH. Effects of sishen pill on TLR2/IRAK4/NF-κB signaling pathway in ulcerative colitis model rats of spleen-kidney Yang-deficiency[D]. Lanzhou:Master's Thesis of Gansu University of Chinese Medicine, 2022 (in Chinese).
    [116] 王盈蕴. 四神丸对溃疡性结肠炎大鼠模型肠道菌群及Treg/Th17免疫轴平衡的影响[D].
    兰州:甘肃中医药大学硕士学位论文, 2022.
    WANG YY. Effects of sishen wan on gut microbiota and treg/Th17 immune axis balance in rats with ulcerative colitis[D]. Lanzhou:Master's Thesis of Gansu University of Chinese Medicine, 2022 (in Chinese).
    [117] 毛慧芳, 安冬, 李璐, 吴玉泓, 梁永林. 不同中医证型溃疡性结肠炎肠道菌群特征性变化研究进展[J]. 中国中医药信息杂志, 2020, 27(10):141-144.
    MAO HF, AN D, LI L, WU YH, LIANG YL. Research progress in characteristic changes of intestinal flora in ulcerative colitis of different TCM syndrome types[J]. Chinese Journal of Information on Traditional Chinese Medicine, 2020, 27(10):141-144 (in Chinese).
    [118] 黄钲淇, 姬永宽, 陈国森, 梁锦娉, 张钤奥, 刘果. 慢溃宁方对溃疡性结肠炎小鼠炎症因子表达及肠道菌群的影响[J]. 中国实验方剂学杂志, 2022, 28(12):86-95.
    HUANG ZQ, JI YK, CHEN GS, LIANG JP, ZHANG QN, LIU G. Effect of mankuining decoction on expression of inflammatory factors and intestinal flora in mice with ulcerative colitis[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2022, 28(12):86-95 (in Chinese).
    [119] BU F, ZHANG SH, DUAN ZL, DING Y, CHEN T, WANG R, FENG ZY, SHI GP, ZHOU JY, CHEN YG. A critical review on the relationship of herbal medicine, Akkermansia muciniphila, and human health[J]. Biomedicine & Pharmacotherapy, 2020, 128:110352.
    [120] LIN ZM, CHEN L, CHENG MN, ZHU FH, YANG XQ, ZHAO WM, ZUO JP, HE SJ. Cortex periplocae modulates the gut microbiota to restrict colitis and colitis-associated colorectal cancer via suppression of pathogenic Th17 cells[J]. Biomedicine & Pharmacotherapy=Biomedecine & Pharmacotherapie, 2022, 153:113399.
    [121] CHEN Y, XIAO SM, GONG ZP, ZHU XX, YANG Q, LI YJ, GAO SR, DONG Y, SHI Z, WANG YJ, WENG XG, LI Q, CAI WY, QIANG WJ. Wuji wan formula ameliorates diarrhea and disordered colonic motility in post-inflammation irritable bowel syndrome rats by modulating the gut microbiota[J]. Frontiers in Microbiology, 2017, 8:2307.
    [122]
    严娟, 盛丽莉, 李艳, 包义扬, 李后开. 四妙方通过增加肠道Akkermansia muciniphila改善胰岛素抵抗的作用机制研究[J]. 药学学报, 2022. 5(69):1-31.
    YAN J, SHENG LL, LI Y, BAO YY, LI HK. Mechanism study of Si Miao Formula on alleviating insulin resistance by increasing the abundance of Akkermansia muciniphila in mice[J]. Acta Pharmaceutica Sinica, 2022. 5(69):1-31 (in Chinese).
    [123] 魏海梁, 李京涛, 陈志国, 闫曙光. 小檗碱与6-姜烯酚配伍对溃疡性结肠炎小鼠肠道炎症和菌群影响的实验研究[J]. 中国中药杂志, 2022, 47(16):4418-4427.
    WEI HL, LI JT, CHEN ZG, YAN SG. Experimental study on effects of berberine combined with 6-shogaol on intestinal inflammation and flora in mice with ulcerative colitis[J]. China Journal of Chinese Materia Medica, 2022, 47(16):4418-4427 (in Chinese).
    [124] LUO S, WEN RY, WANG Q, ZHAO ZX, NONG FF, FU YJ, HUANG SW, CHEN JY, ZHOU L, LUO X. Rhubarb Peony Decoction ameliorates ulcerative colitis in mice by regulating gut microbiota to restoring Th17/Treg balance[J]. Journal of Ethnopharmacology, 2019, 231:39-49.
    [125] 秦华珍, 黄少敏, 黄焕迪, 何瑞坤, 戴庆玲, 钟贵, 谢旭格, 牛新迈, 柳俊辉. 3味山姜属中药黄酮类成分对胃溃疡寒证大鼠肠道短链脂肪酸含量的影响[J]. 中华中医药学刊, 2022, 40(6):5-10.
    QIN HZ, HUANG SM, HUANG HD, HE RK, DAI QL, ZHONG G, XIE XG, NIU XM, LIU JH. Effects of flavonoids from three kinds of Alpinia herbs on intestinal short chain fatty acids in rats with gastric ulcer of cold syndrome[J]. Chinese Archives of Traditional Chinese Medicine, 2022, 40(6):5-10 (in Chinese).
    [126] 罗青, 禄璐, 闫亚美, 米佳, 李晓莺, 曹有龙, 曾晓雄. 枸杞粉及其多糖对环磷酰胺致免疫低下小鼠免疫及肠道菌群的调节作用[J]. 食品科学, 2022, 43(11):137-148.
    LUO Q, LU L, YAN YM, MI J, LI XY, CAO YL, ZENG XX. Immunomodulatory effects of spray dried powder of goji (Lycium barbarum L.) and goji polysaccharides on immunosuppressive mice induced by cyclophosphamide and their regulation on gut microbiota[J]. Food Science, 2022, 43(11):137-148 (in Chinese).
    [127] ZHU L, XU LZ, ZHAO S, SHEN ZF, SHEN H, ZHAN LB. Protective effect of baicalin on the regulation of Treg/Th17 balance, gut microbiota and short-chain fatty acids in rats with ulcerative colitis[J]. Applied Microbiology and Biotechnology, 2020, 104(12):5449-5460.
    [128] 冯泽猛, 包显颖, 印遇龙. 胃肠道黏液层中Akkermansia muciniphila的定殖及其与宿主的相互作用[J]. 中国农业科学, 2016, 49(8):1577-1584.
    FENG ZM, BAO XY, YIN YL. The interaction of colonization of Akkermansia muciniphila in gastrointestinal tract and its host[J]. Scientia Agricultura Sinica, 2016, 49(8):1577-1584 (in Chinese).
    [129] WANG X, SHI LL, WANG XP, FENG Y, WANG Y. MDG-1, an Ophiopogon polysaccharide, restrains process of non-alcoholic fatty liver disease via modulating the gut-liver axis[J]. International Journal of Biological Macromolecules, 2019, 141:1013-1021.
    [130] VALCHEVA R, KOLEVA P, MARTÍNEZ I, WALTER J, GÄNZLE MG, DIELEMAN LA. Inulin-type fructans improve active ulcerative colitis associated with microbiota changes and increased short-chain fatty acids levels[J]. Gut Microbes, 2019, 10(3):334-357.
    [131] WANG Y, SHOU JW, LI XY, ZHAO ZX, FU J, HE CY, FENG R, MA C, WEN BY, GUO F, YANG XY, HAN YX, WANG LL, TONG Q, YOU XF, LIN Y, KONG WJ, SI SY, JIANG JD. Berberine-induced bioactive metabolites of the gut microbiota improve energy metabolism[J]. Metabolism, 2017, 70:72-84.
    [132] ZHANG X, ZHAO YF, XU J, XUE ZS, ZHANG MH, PANG XY, ZHANG XJ, ZHAO LP. Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats[J]. Scientific Reports, 2015, 5:14405.
    [133] HE XQ, LIU D, LIU HY, WU DT, LI HB, ZHANG XS, GAN RY. Prevention of ulcerative colitis in mice by sweet tea (Lithocarpus litseifolius) via the regulation of gut microbiota and butyric-acid-mediated anti-inflammatory signaling[J]. Nutrients, 2022, 14(11):2208.
    [134] YU HN, GUO ZZ, SHEN SR, SHAN WG. Effects of taurine on gut microbiota and metabolism in mice[J]. Amino Acids, 2016, 48(7):1601-1617.
    [135] WU T, WANG XY, XIONG H, DENG ZY, PENG X, XIAO LH, JIANG L, SUN Y. Bioactives and their metabolites from Tetrastigma hemsleyanum leaves ameliorate DSS-induced colitis via protecting the intestinal barrier, mitigating oxidative stress and regulating the gut microbiota[J]. Food & Function, 2021, 12(23):11760-11776.
    [136] GAO CC, LI GW, WANG TT, GAO L, WANG FF, SHANG HW, YANG ZJ, GUO YX, WANG BY, XU JD. Rhubarb extract relieves constipation by stimulating mucus production in the colon and altering the intestinal flora[J]. Biomedicine & Pharmacotherapy, 2021, 138:111479.
    [137] ROPOT AV, KARAMZIN AM, SERGEYEV OV. Cultivation of the next-generation probiotic Akkermansia muciniphila, methods of its safe delivery to the intestine, and factors contributing to its growth in vivo[J]. Current Microbiology, 2020, 77(8):1363-1372.
    [138] MACHADO D, ALMEIDA D, SEABRA CL, ANDRADE JC, GOMES AM, FREITAS AC. Uncovering Akkermansia muciniphila resilience or susceptibility to different temperatures, atmospheres and gastrointestinal conditions[J]. Anaerobe, 2020, 61:102135.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

毛慧芳,梁永林. 黏质阿克曼菌及其代谢物短链脂肪酸与溃疡性结肠炎肠黏膜屏障的相关性研究[J]. 微生物学报, 2023, 63(4): 1411-1431

复制
分享
文章指标
  • 点击次数:397
  • 下载次数: 779
  • HTML阅读次数: 1368
  • 引用次数: 0
历史
  • 收稿日期:2022-09-02
  • 最后修改日期:2022-10-14
  • 在线发布日期: 2023-04-06
文章二维码