四种K:CA荚膜型别克罗诺杆菌的荚膜多糖组分研究
作者:
基金项目:

国家自然科学基金(32102104, 32230084);中央高校基本科研专项资金(JZ2022HGTB0271);安徽省杰出青年基金项目(2208085J11)


Capsular polysaccharide components from four K:CA capsular types of Cronobacter
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】克罗诺杆菌(Cronobacter)是一类以奶粉为主要传播媒介的食源性致病菌,能够引起坏死性小肠结肠炎、脑膜炎、菌血症等疾病。荚膜是细菌常见的毒力因子,本研究对4种K:CA型别的Cronobacter荚膜多糖进行分析,以期发现荚膜型别与荚膜多糖的单糖组成的关联规律。【方法】本研究通过苯酚-硫酸法和氢核磁共振(1H NMR)分别对28株Cronobacter (4种K:CA型别)荚膜多糖的产量和单糖组成进行分析。【结果】文章研究了不同培养基、培养时间对Cronobacter荚膜多糖产生的影响,确定了最佳培养条件为在牛奶琼脂培养基中培养48.0 h,而且不同条件下未改变Cronobacter荚膜多糖的单糖组成。本研究进一步发现,4种K:CA型别菌株间的荚膜多糖产量具有显著差异,K2:CA2型别的荚膜多糖平均产量最高。其中,2株荚膜多糖产量高的菌株C. sakazakii ATCC 12868和C. sakazakii ATCC 29004也均为K2:CA2型别,产量分别为19.6%和28.4%。此外,通过1H NMR测定出28株Cronobacter的荚膜多糖中的单糖组分有8种,其中在C. malonaticus cro1754B2和C. sakazakii cro1573B3发现了β-ManpNAc,只在C. sakazakii cro771A2中发现了β-Ribp,本研究还发现大多数K1:CA1型别荚膜多糖中均有α-Rhap,大部分K1:CA2型别和K2:CA1菌株荚膜多糖由β-Glcp构成,其中α-Glcp为K2:CA2荚膜多糖的主要单糖组分。【结论】本研究初步揭示了4种荚膜型别Cronobacter的多糖分泌规律,发现K2:CA2型别的荚膜多糖平均产量最高,发现了Cronobacter荚膜多糖的单糖组成与荚膜型别的相关性,为Cronobacter的荚膜特性深入研究奠定了理论和技术基础。

    Abstract:

    [Objective] Cronobacter, a foodborne pathogen transmitted mainly by powdered infant formula, can cause necrotizing enterocolitis, bacteraemia, meningitis and other diseases. We analyzed the composition of capsular polysaccharides from four K:CA types of Cronobacter to explore the correlation between different capsular types and monosaccharide composition of capsular polysaccharides. [Methods] We measured the yields of capsular polysaccharides from 28 Cronobacter strains (4 K:CA types) by phenol-sulfuric acid method and determined the monosaccharide composition of the capsular polysaccharides by 1H NMR. [Results] The capsular polysaccharide yield of Cronobacter was the best when the bacteria were cultured in milk agar for 48.0 h, while the monosaccharide composition did not change under different culture conditions. The yield of capsular polysaccharides varied among the four K:CA types of Cronobacter, of which the K2:CA2 type had the highest average yield. Further, we identified that two strains C. sakazakii ATCC 12868 and C. sakazakii ATCC 29004 with high yields of capsular polysaccharides (19.6% and 28.4%, respectively) were of K2:CA2 type. The capsular polysaccharides of 28 Cronobacter isolates contained 8 monosaccharides, among which β-ManpNAc was only in C. malonaticus cro1754B2 and C. sakazakii cro1573B3, and β-Ribp only in C. sakazakii cro771A2. In addition, α-Rhap, β-Glcp, and α-Glcp were the dominant monosaccharide components of capsular polysaccharide in strains of K1:CA1 type, K1:CA2 and K2:CA1 types, and K2:CA2 type, respectively. [Conclusion] This study preliminarily revealed the polysaccharide yields of four K:CA capsular types of Cronobacter and found that K2:CA2 type had the highest average yield of capsular polysaccharide. We confirmed the correlation between the monosaccharide composition of capsular polysaccharide and the capsular types of Cronobacter, which provided a theoretical and technical foundation for further research on the capsular properties of Cronobacter.

    参考文献
    [1] FARMER JJ 3rd. My 40-year history with Cronobacter/Enterobacter sakazakii-lessons learned, myths debunked, and recommendations[J]. Frontiers in Pediatrics, 2015, 3:84.
    [2] MULLANE NR, MURRAY J, DRUDY D, PRENTICE N, WHYTE P, WALL PG, PARTON A, FANNING S. Detection of Enterobacter sakazakii in dried infant milk formula by cationic-magnetic-bead capture[J]. Applied and Environmental Microbiology, 2006, 72(9):6325-6330.
    [3] BAR-OZ B, PREMINGER A, PELEG O, BLOCK C, ARAD I. Enterobacter sakazakii infection in the newborn[J]. Acta Paediatrica:Oslo, Norway:1992, 2001, 90(3):356-358.
    [4] ZENG HY, LEI T, HE WJ, ZHANG JM, LIANG BS, LI CS, LING N, DING Y, WU S, WANG J, WU QP. Novel multidrug-resistant Cronobacter sakazakii causing meningitis in neonate, China, 2015[J]. Emerging Infectious Diseases, 2018, 24(11):2121-2124.
    [5] STEPHAN R, GRIM CJ, GOPINATH GR, MAMMEL MK, SATHYAMOORTHY V, TRACH LH, CHASE HR, FANNING S, TALL BD. Re-examination of the taxonomic status of Enterobacter helveticus, Enterobacter pulveris and Enterobacter turicensis as members of the genus Cronobacter and their reclassification in the genera Franconibacter gen. nov. and Siccibacter gen. nov. as Franconibacter helveticus comb. nov., Franconibacter pulveris comb. nov. and Siccibacter turicensis comb. nov., respectively[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt_10):3402-3410.
    [6] JOSEPH S, CETINKAYA E, DRAHOVSKA H, LEVICAN A, FIGUERAS MJ, FORSYTHE SJ. Cronobacter condimenti sp. nov., isolated from spiced meat, and Cronobacter universalis sp. nov., a species designation for Cronobacter sp. genomospecies 1, recovered from a leg infection, water and food ingredients[J]. International Journal of Systematic and Evolutionary Microbiology, 2012, 62(Pt_6):1277- 1283.
    [7] IVERSEN C, MULLANE N, MCCARDELL B, TALL BD, LEHNER A, FANNING S, STEPHAN R, JOOSTEN H. Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov., comb. nov., Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov., Cronobacter dublinensis subsp. lausannensis subsp. nov. and Cronobacter dublinensis subsp. lactaridi subsp. nov.[J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(6):1442-1447.
    [8] BRADY C, CLEENWERCK I, VENTER S, COUTINHO T, de VOS P. Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA):proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter[J]. Systematic and Applied Microbiology, 2013, 36(5):309-319.
    [9] HUANG Y, PANG YH, WANG H, TANG ZZ, ZHOU Y, ZHANG WY, LI XG, TAN DM, LI J, LIN Y, LIU XL, HUANG WY, SHI YL. Occurrence and characterization of Cronobacter spp. in dehydrated rice powder from Chinese supermarket[J]. PLoS One, 2015, 10(7):e0131053.
    [10] CRESS BF, ENGLAENDER JA, HE WQ, KASPER D, LINHARDT RJ, KOFFAS MAG. Masquerading microbial pathogens:capsular polysaccharides mimic host-tissue molecules[J]. FEMS Microbiology Reviews, 2014, 38(4):660-697.
    [11] WHITFIELD C. Biosynthesis and assembly of capsular polysaccharides in Escherichia coli[J]. Annual Review of Biochemistry, 2006, 75:39-68.
    [12] OGRODZKI P, FORSYTHE S. Capsular profiling of the Cronobacter genus and the association of specific Cronobacter sakazakii and C. malonaticus capsule types with neonatal meningitis and necrotizing enterocolitis[J]. BMC Genomics, 2015, 16:758.
    [13] YAO HYY, WANG JQ, YIN JY, NIE SP, XIE MY. A review of NMR analysis in polysaccharide structure and conformation:progress, challenge and perspective[J]. Food Research International, 2021, 143:110290.
    [14] 王楷宬, 赵峡, 陆承平, 姚火春. 猪链球菌1、2、14、1/2型荚膜多糖的单糖组成比较[J]. 微生物学报, 2014, 54(6):656-662. WANG KC, ZHAO X, LU CP, YAO HC. Comparison 楯摦攠孭?嵮??剡畣獣獨楡慲湩??栠散浯業捰慯汳??畩汯汮攠瑯楦渠???び???????????????????扳爠?孮㈠?嵩 ̄呓啴???????乣?呵???奵?乳??????????????吱唬?圲??????佮????′?佊?吮倠??坴啡?坍?????乩??呯???佡??剩????伬唠′?失??圠?临???????圭唶??夨??圠?乨???味???唼?乲??????坨啣?匬???匟琬爠甘掆璛甬爠慨氦?愠渹摣?戮椠濹汻潡柶槹捶慛泑?槌渵王楚果栚瓖玧?榄湱瓍潛??椮??沽斜戚珑楦攬氠氲愰‰瀸測攠申洶漨渱椶愩攺??椱??猶甸爱昴愬挠收?瀲漰氮礠獙慁捎捇栠慚牔椬搠敚?摁敎杇爠慎摓愬琠楌潉湕?扑祔?愠?扁慎捇琠救爬椠潙灉桎愠杒敌????汦祥慣獴攠?楦洠灣汵楬捴慵瑲楥漠湣獯?晤潩牴?捯汮椠湯楮挠慴汹?略猠攵嬠?嵡???潬畡牲渠慰汯?潹晳??楣潨浡敲摩楤捥愠汰?卯捤極散湴捩敯???て㈠监? ̄?????????扯牣?孵??嵡??剥??吼匯?夾?书偲??匠?乩????剣???????九央传乊?????卬??卦??佮器??匠??偲佩偣併噬???噡????剩佥卮?乥??传嘲‰????嘳伶?伱娶??丶吸匱?嘭?丸嘱???丶?刲???奮???卩瑮牥畳捥琩甮爼敢?漾晛?琶桝攠?湕攠畘瑊爬愠汗?捎慇瀠獘留氬愠牄?灎潇氠祘猬愠捌捉栠慐爬椠摗敁?潇映??椠??捡楲湡散瑴潥扲慩捺瑡整物?扮愠畯浦愠湴湨楥椠??楳??乣?側?????瑯桬慥瑲?据慣牥爠楯敦猠?瑩栾敃??????捣慴灥獲甠汳敡?条敺湡敫?捩氼甯獩琾攠牳孴?嵡???慛牊扝漮栠祆摲牯慮瑴敩?割敳猠敩慮爠捍桩???ぢ?????????日?????戺爲?嬶祝?崼??刾??吷卝?奃?乓偔??協問乎?奊???卉??卉??佒噔??千??坎?丠???????唠???????噡??????坯?乡??????丠?剡???奥???卤琠牤畩捳瑥畡牳敥?慊湝搮?杁敮湮敵瑡楬挠獒?潶晩?瑷栠敯?传?慩湣瑲楯杢敩湯?潯晧??椠??爸漱測漠戳愵挺琲改爹?猳愲欴愮稼慢歲椾楛??楝???休?㈠??猬攠牋潁瑎礠灊敓?传???挠汘潑猬攠汙祉?爠敍汌愮琠敉摮?瑩潧?瑴桳攠?佮?慯渠瑭極杣敯湩?漠昼??楁????楴????楴?浲甠祢瑡橵敭湡獮楮楩??椯? ̄???ひ孥?嵩???慯牦戠潭桩祣摲牯慢瑩敯?副敧獩散慡牬挠档???ち?????????び????rulence, and pathogenic mechanisms in a threatening nosocomial pathogen[J]. Microbiological Research, 2022, 261:127057.
    [19] 谢黎卿, 杨洋, 彭远义, 李能章. 病原微生物荚膜多糖的生物学功能[J]. 畜牧兽医学报, 2021, 52(3):576-587. XIE LQ, YANG Y, PENG YY, LI NZ. Research progress on the function and immunity of capsular polysaccharide[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(3):576-587(in Chinese).
    [20] ARBATSKY NP, WANG M, SHASHKOV AS, CHIZHOV AO, FENG L, KNIREL YA, WANG L. Structure of the O-polysaccharide of Cronobacter sakazakii O2 with a randomly O-acetylated l-rhamnose residue[J]. Carbohydrate Research, 2010, 345(14):2090-2094.
    [21] AZURMENDI HF, VEERAMACHINENI V, FREESE S, LICHAA F, FREEDBERG DI, VANN WF. Chemical structure and genetic organization of the E. coli O6:K15 capsular polysaccharide[J]. Scientific Reports, 2020, 10(1):12608.
    [22] TSVETKOV YE, YASHUNSKY DV, SUKHOVA EV, KURBATOVA EA, NIFANTIEV NE. Synthesis of oligosaccharides structurally related to fragments of Streptococcus pneumoniae type 3 capsular polysacchar
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王希浩,凌娜,偶德馨,叶应旺,吴清平. 四种K:CA荚膜型别克罗诺杆菌的荚膜多糖组分研究[J]. 微生物学报, 2023, 63(4): 1490-1500

复制
分享
文章指标
  • 点击次数:238
  • 下载次数: 897
  • HTML阅读次数: 706
  • 引用次数: 0
历史
  • 收稿日期:2022-08-15
  • 最后修改日期:2022-11-04
  • 在线发布日期: 2023-04-06
文章二维码